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Summary

Cameras are ubiquitous in our daily lives, and the amount of
video data generated is staggering. The ability to analyze and un-
derstand video content has far-reaching implications for various
applications, including robotics, autonomous driving and gener-
ative art. A camera is a rich information source that, depending
on the application, can be cheaper and more informative than a
multitude of other sensors. For instance, in a robotic application,
information about the environment, the robot’s position, and the
objects it interacts with can all be provided by a single camera.

Since around 2012, tremendous progress has been made in the
field of computer vision. The introduction of deep learning has
revolutionized the way we approach e.g. image classification,
object detection and segmentation tasks. The development of
powerful ideas such as convolutional neural networks (CNNs)
and diffusion models have tremendously pushed the boundaries
of what is possible in computer vision. The advent of large-scale
datasets and the availability of pre-trained models have further
accelerated research in this area. It has become relatively easy
to solve certain practical computer vision problems using deep
learning methods, compared to a decade ago. For many compa-
nies the main problem is not finding a good technical solution,
but rather implementing and integrating this solution, or even
more mundane, finding, labeling and cleaning the right data.
This means, from an academic perspective, research directions
have shifted to more difficult tasks, requiring more data, more
complexmodels andmore compute. In this context, we focus the
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research in this thesis on methodological advances, rather than
on scaling up data, models or compute.

In this thesis, we explore a number of ways to enhance the ca-
pabilities of models for video understanding. Learning models
from video entails learning the underlying dynamics of a system
from its visual representation. An accurate model is capable of
predicting future video frames, given a sequence of past frames.
This is useful for many applications, such as robotics, where the
model can be used to control a robot based on its visual input.

One fundamental question is howwechoose to approach the time
aspect of these models. We can either choose a fixed discretiza-
tion of time (discretize-then-optimize), or we can choose to model
the dynamics in continuous time (optimize-then-discretize). The
first option entails defining a fixed grid of time points and limiting
our models to only operate on these predefined time points. The
second option allows us to define models that are continuous in
time, i.e., we can use them at any time point, not just on a fixed
grid of time points. Since nature is continuous, it makes sense to
model the dynamics in continuous time. This is the approach we
take in this thesis.

We identify three main research goals in this thesis, outlined
below.

Physics Priors. Physics priors are a way to incorporate prior
knowledge about the underlying dynamics of a system into the
learning process. Specifically, we use Lagrangian dynamics to
model the underlying dynamics of a system. This entails mod-
eling the system explicitly using its potential energy and mass
matrix. In this thesis we present KeyCLD, a framework to learn
Lagrangian dynamics from images. Learned keypoints represent
semantic landmarks in images and can directly represent state
dynamics. We show that interpreting this state as Cartesian co-
ordinates, coupled with explicit holonomic constraints, allows
expressing the dynamics with a constrained Lagrangian. Key-
CLD is trained unsupervised end-to-end on sequences of images.
Our method explicitly models the mass matrix, potential energy
and the input matrix, thus allowing energy based control. We
demonstrate learning of Lagrangian dynamics from images on
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the dm_control pendulum, cartpole and acrobot environments.
KeyCLD can be learned on these systems, whether they are un-
actuated, underactuated or fully actuated. Trained models are
able to produce long-term video predictions, showing that the
dynamics are accurately learned. We compare with other recent
methods from the literature, and investigate the benefit of the La-
grangian prior and the constraint function. KeyCLD achieves the
highest valid prediction time on all benchmarks. Additionally,
a very straightforward energy shaping controller is successfully
applied on the fully actuated systems.

Long-range Stochastic Dynamics. The preceding paragraph
considers physics priors in a deterministic manner. We also
take a step further towards learning stochastic dynamical models
from video. In this thesis we present a novel variational
framework for performing inference in (neural) stochastic
differential equations (SDEs) driven by Markov-approximate
fractional Brownian motion (fBM). SDEs offer a versatile tool
for modeling real-world continuous-time dynamic systems
with inherent noise and randomness. Combining SDEs with
the powerful inference capabilities of variational methods,
enables the learning of representative distributions through
stochastic gradient descent. However, conventional SDEs
typically assume the underlying noise to follow a Brownian
motion (BM), which hinders their ability to capture long-
term dependencies. In contrast, fractional Brownian motion
(fBM) extends BM to encompass non-Markovian dynamics,
but existing methods for inferring fBM parameters are either
computationally demanding or statistically inefficient. By
building upon the Markov approximation of fBM, we derive
the evidence lower bound essential for efficient variational
inference of posterior path measures, drawing from the well-
established field of stochastic analysis. Additionally, we provide
a closed-form expression for optimal approximation coefficients
and propose to use neural networks to learn the drift, diffusion
and control terms within our variational posterior, leading to the
variational training of neural-SDEs. In this framework, we also
optimize the Hurst index, governing the nature of our fractional
noise. Beyond validation on synthetic data, we contribute a
novel architecture for variational latent video prediction,—an
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approach that, to the best of our knowledge, enables the first
variational neural-SDE application to video perception.

Efficient Learning of SDEs. Learning stochastic differential
equations (SDEs) from data is computationally challenging. Due
to the iterative nature of maximizing the evidence lower bound,
which requires solving the SDE for each iteration, the training of
neural SDEs is generally slow and unstable. How can we more
efficiently learn SDEs from data? We present a hierarchical,
control theory inspired method for variational inference for
neural SDEs. In this chapter, we propose to decompose the
control term into linear and residual non-linear components and
derive an optimal control term for linear SDEs, using stochastic
optimal control. Modeling the non-linear component by a
neural network, we show how to efficiently train neural SDEs
without sacrificing their expressive power. Since the linear part
of the control term is optimal and does not need to be learned,
the training is initialized at a lower cost and we observe faster
convergence.

This dissertation answers the above three main goals to
ultimately work towards learning from video in continuous-
time using physics priors and fractional noise. Our research
demonstrates that it is possible to simultaneously learn both
Lagrangian dynamics and state estimator models from video in
one end-to-end process. Secondly, our advances in variational
inference for stochastic processes driven by fractional noise
open new avenues for modeling complex temporal phenomena
with long-range dependencies. Lastly, we propose a method
inspired from optimal control theory to more efficiently learn
SDEs from data.
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Samenvatting

Camera’s zijn alomtegenwoordig in ons dagelijks leven en de hoe-
veelheid gegenereerde videogegevens is enorm. Demogelijkheid
omvideo-inhoud te analyseren en te interpreterenheeft verstrek-
kende gevolgen voor een veelheid aan toepassingen, zoals robo-
tica, autonoom rijden en generatieve kunst. Een camera is een
rijke informatiebron die, afhankelijk van de toepassing, goedko-
per en informatiever kan zijn dan meerdere andere sensoren.
In een roboticatoepassing bijvoorbeeld kan informatie over de
omgeving, de positie van de robot en de objecten waarmee de
robot interageert allemaal worden aangeleverd door één enkele
camera.

Sinds ongeveer 2012 is er een enorme vooruitgang geboekt in
het domein van computervisie. De introductie van deep learning
heeft een revolutie teweeggebracht in de manier waarop we bij-
voorbeeld beeldclassificatie, objectdetectie en segmentatietaken
benaderen. De ontwikkeling van krachtige ideeën zoals convolu-
tionele neurale netwerken en diffusiemodellen hebben de gren-
zen van wat mogelijk is in computervisie enorm uitgebreid. De
komst van grootschalige hoeveelheden data en de beschikbaar-
heid van voorgetrainde modellen hebben het onderzoek in dit
domein verder versneld. Het is relatief eenvoudig geworden om
bepaalde praktische computervisie problemen op te lossen met
behulp van diepe leermethoden, vergelekenmet een decennium
geleden. Voor veel bedrijven is het belangrijkste probleem niet
om een goede technische oplossing te vinden, maar eerder om
die oplossing te implementeren en te integreren, of zelfs meer

xi



alledaags, om de meest bruikbare data te vinden, te annoteren
en op te schonen. Vanuit academisch perspectief betekent dit
dat de onderzoeksrichtingen zijn verschoven naar moeilijkere
taken, waarvoor meer data, meer complexe modellen en meer
rekenkracht nodig zijn. In deze context richtenwehet onderzoek
in dit proefschrift opmethodologische vooruitgang, in plaats van
op het opschalen van data, modellen of rekenkracht.

In dit proefschrift verkennen we een aantal manieren om de
capaciteit van modellen voor het begrijpen van video te verbe-
teren. Modellen leren van video houdt in dat je de onderliggende
dynamiek van een systeem leert vanaf haar visuele representatie.
Een nauwkeurig model is in staat om toekomstige videoframes
te voorspellen, gegeven een reeks voorgaande frames. Dat is
nuttig voor veel toepassingen, zoals robotica, waar hetmodel kan
worden gebruikt om een robot te besturen op basis van de visuele
input.

Een fundamentele vraag is hoe we het aspect tijd bij deze model-
len benaderen. We kunnen kiezen voor een vaste discretisatie
van de tijd (eerst discretiseren, dan optimaliseren), of we kunnen
ervoor kiezen om de dynamica in continue tijd te modelleren
(eerst optimaliseren, dan discretiseren). De eerste optie houdt in dat
we een vast raster van tijdpunten definiëren en onze modellen
beperken tot deze vooraf gedefinieerde tijdpunten. De tweede
optie stelt ons in staat ommodellen te definiëren die continu zijn
in de tijd, dat wil zeggen dat we ze op elk tijdstip kunnen gebrui-
ken, niet alleen op een vast raster van tijdspunten. Aangezien
de natuur continu is, is het zinvol om de dynamica in continue
tijd te modelleren. Dat is de benadering die we in dit proefschrift
hanteren.

We identificeren drie belangrijke onderzoeksdoelen in dit proef-
schrift, die hieronder worden beschreven.

Fysische voorkennis. Het gebruik van fysische voorkennis is een
manier om eerdere kennis over de onderliggende dynamica van
een systeem op te nemen in het leerproces. Specifiek gebruiken
we Lagrangiaanse dynamica om de onderliggende dynamica van
een systeem te modelleren. Dat houdt in dat het systeem expli-
ciet gemodelleerd wordt met behulp van zijn potentiële energie
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en massa matrix. In dit proefschrift presenteren we KeyCLD,
een raamwerk om Lagrangiaanse dynamica vanaf afbeeldingen
te leren. Geleerde sleutelpunten vertegenwoordigen semanti-
sche herkenningspunten in afbeeldingen en kunnen direct de
toestand vandedynamicaweergeven. We tonen aandat het inter-
preteren van de toestand als Cartesische coördinaten, gekoppeld
aan expliciete holonome nevenvoorwaarden, hetmogelijkmaakt
om de dynamica uit te drukken met een beperkte Lagrangiaan.
KeyCLD wordt zonder supervisie getraind op beeldsequenties.
Onze methode modelleert expliciet de massamatrix, potentiële
energie ende inputmatrix, waardoor energiegebaseerde controle
mogelijk is. We demonstreren het leren van Lagrangiaanse dy-
namica uit afbeeldingen op de dm_control slinger-, cartpole- en
acrobotomgevingen. KeyCLD kan worden geleerd op deze syste-
men, of ze nu ongeactueerd, ondergeactueerd of volledig geactu-
eerd zijn. Getrainde modellen zijn in staat om lange-termijn vi-
deovoorspellingen te doen, waaruit blijkt dat de dynamica nauw-
keurig wordt geleerd. We vergelijkenmet andere recente metho-
den uit de literatuur en onderzoeken het voordeel van de Lagran-
giaanse voorkennis en de holonome nevenvoorwaarden. Key-
CLD behaalt de hoogste geldige voorspellingstijd op alle vergelij-
kingstesten. Daarnaast wordt een zeer eenvoudige regelaar voor
energiegebaseerde controle met succes toegepast op de volledig
geactueerde systemen.

Stochastische dynamica met lange-termijninteracties. De vo-
rige paragraaf beschouwt het toevoegen van fysische voorkennis
op een deterministische manier. We gaan ook een stap verder in
de richting vanhet leren van stochastische dynamischemodellen
van video. In dit proefschrift presenteren we een nieuw varia-
tioneel raamwerk om inferentie uit te voeren van (neurale) sto-
chastische differentiaalvergelijkingen (SDE’s) aangedreven door
een Markov-benadering van fractionele Browniaanse beweging
(fBM). SDE’s bieden een veelzijdig instrument voor het modelle-
ren van echte continue-tijd dynamische systemenmet inherente
ruis enwillekeurigheid. Door SDE’s te combinerenmet de krach-
tige methode van variationele gevolgtrekking, maakt leren van
representatieve distributies mogelijk via stochastische gradiënt-
afdaling. Conventionele SDE’s gaan er echter typisch van uit dat
het onderliggende ruis een Browniaanse beweging (BM) volgt,
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wat hun vermogen om lange-termijn afhankelijkheden vast te
leggen belemmert. De fractionele Browniaanse beweging (fBM)
daarentegen breidt de BM uit met niet-Markoviaanse dynamiek.
Bestaande methoden voor het afleiden van fBM-parameters zijn
echter ofwel rekenkundig te veeleisend of statistisch inefficiënt.
Door voort te bouwen op de Markov-benadering van fBM, leiden
we de bewijsondergrens af die essentieel is voor efficiënte vari-
ationele gevolgtrekking van de a posteriori padmaten, waarbij
we steunen op gevestigdemethoden uit de stochastische analyse.
Bovendien geven we een gesloten uitdrukking voor optimale be-
naderingscoëfficiënten en stellenwe voor omneurale netwerken
te gebruiken om de drift-, diffusie- en controletermen binnen
onze variationele a posteriori distributie te leren, wat leidt tot de
variationele training van neurale-SDE’s. We optimaliseren ook de
Hurst-index, die de aard van de fractionele ruis bepaalt. Naast
validatie op synthetische data presenteren we een nieuwe archi-
tectuur voor variationele latente videovoorspelling, een benade-
ring die, voor zover wij weten, de eerste variationele neurale-SDE
toepassing op videoperceptie mogelijk maakt.

Efficiënt leren van SDE’s. Het leren van stochastische differen-
tiaalvergelijkingen (SDE’s) van data is een computationele uit-
daging. Door de iteratieve aard van het maximaliseren van de
bewijsondergrens, die het oplossen van de SDE voor elke iteratie
vereist, is het leren van neurale SDE’s over het algemeen traag
en onstabiel. Hoe kunnen we efficiënter SDE’s van data leren?
We presenteren een hiërarchische, op controletheorie geïnspi-
reerde methode voor variationele gevolgtrekking voor neurale
SDE’s. In dit hoofdstuk stellen we voor om de controleterm te
ontleden in lineaire en residuele niet-lineaire componenten, en
een optimale controleterm af te leiden voor lineaire SDE’s, met
behulp van stochastische optimale controletheorie. Door de niet-
lineaire component te modelleren met een neuraal netwerk, to-
nen we aan dat neurale SDE’s efficiënt getraind kunnen worden
zonder hun expressief vermogen te verminderen. Omdat het
lineaire deel vande controletermoptimaal is enniet geleerdhoeft
te worden, wordt de training geïnitialiseerd aan een lagere kost
en observeren we snellere convergentie.

Dit proefschrift beantwoordt de bovenstaande drie hoofddoelen
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om uiteindelijk toe te werken naar het leren van video in continue
tijd met behulp van fysische voorkennis en fractioneel ruis. Ons
onderzoek toont aan dat het mogelijk is om tegelijkertijd zowel
Lagrangiaanse dynamica als toestandsschattingsmodellen te
leren van beelden in één leerproces. Ten tweede opent onze
vooruitgang in variationele gevolgtrekking voor stochastische
processen gedreven door fractioneel ruis nieuwe mogelijkheden
voor het modelleren van complexe temporele fenomenen
met lange-termijnafhankelijkheden. Ten slotte stellen we een
methode voor, geïnspireerd op optimale controletheorie, om
efficiënter SDE’s te leren uit data.
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1
Introduction

This chapter starts by explaining some preliminary concepts,
and then presents the motivation and and main research con-
tributions of this dissertation. These preliminary concepts will
help the reader understand the later chapters. The author aims
to provide some basic insights, intuitions and examples, that
would have helped him at the time he was studying these topics
himself. Whenever possible, references are provided for further
reading.

1.1 Computer Vision in the Golden Age of Deep
Learning

This section’s title is possibly a bit hyperbolic and its longevity
most probably quite limited, however this nicely reflects its con-
tents. How can we indeed describe the current state of computer
vision research with lasting relevance? At the time of writing,
academic progress in the field of computer vision is at an astro-
nomical pace. None can predict how this progress will evolve in
the coming years. Still, we provide a brief history of this tremen-
dous progress that might help us understand what is coming in
the near future.

Many say the current deep learning era started with the so-called
ImageNet moment, when Krizhevsky et al. (2012) presented vastly
improved results on the 2012 ImageNet challenge. Though com-
monly thought to be the first major breakthrough of convolu-
tional neural networks (CNNs), we can rely on Jürgen Schmidhu-
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ber1 to educate us otherwise. It was already in May 2011 that the
first vision contest was won using a CNN (Ciregan et al. (2012)).

At the time of these breakthroughs, many computer vision re-
searchers were skeptical of deep learning methods. They were
seen as black box methods, prone to overfitting and unable to
generalize to novel settings. After some years, even the most
adamant critics had to concede to the superior results of learning
based methods. This paradigm shift has been so profound one
could say we are now in the opposite situation2.

Deep learningmethods outperformed traditionalmethods in var-
ious computer vision tasks such as image classification (He et
al. (2016)), object detection (Redmon et al. (2016)), semantic seg-
mentation (Long et al. (2015)), human pose estimation (Cao et
al. (2017)) and image generation (Goodfellow et al. (2014)). I
purposefully cite relatively old works, because these were big
breakthroughs at the time and more importantly, in terms of ap-
plied computer vision,manypractical applications are still largely
based on these methods. Rightfully so, because in practice it is
often more important to have a method that works, than to have
the latest and greatest method that is only marginally better on
some benchmarks.

One of the most important breakthroughs in computer vision
was the introduction of diffusion models. Song and Ermon (2019)
presented state-of-the-art result on image generation, using dif-
fusion models. This led to a swift adoption of this approach and
very fast progress towards higher resolution images (Rombach et
al. (2022)) andmany other applications (see LingYang et al. (2023)
for an overview). The improvement in image generation crossed
a capability threshold that sparked widespread public interest3.
Tools such as Dall-E, Midjourney and Stable Diffusion quickly
became popular and widely used.

1. For the full story, see https://people.idsia.ch/~juergen/
2010-breakthrough-supervised-deep-learning.html.

2. When I attented the European Conference on Computer Vision (ECCV) in
2022,myfirstmajor conference visit after theCOVID-19 pandemic, Iwas unable
to find more than a handful of posters that did not use neural networks.

3. Coincidently around the same time large languagemodels (LLMs) such as
chatGPT became available, with arguably even larger societal impact.

4
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1.2 Continuous Time Dynamics

It has become tremendously easy to solve certain practical com-
puter vision problems using deep learning methods, compared
to 10 years ago. For many companies the main problem is not
finding a good technical solution, but rather implementing and
integrating this solution, or even more mundane, finding, label-
ing and cleaning the right data. This means, from an academic
perspective, research directions have shifted to more difficult
tasks, requiringmore data,more complexmodels andmore com-
pute. Along with this shift and a strongly growing community,
the pressure and competition to publish has also increased. In
this context, a deliberate choice was made to focus the research
in this thesis to methodological advances, rather than on scaling
up data, models or compute. We have sought to incorporate
physics priors and fractional noise in ourmodels inways that had
not been done before. Thinking about the underlying principles
of our models and how they can be improved, rather than just
scaling them up.

1.2 Continuous Time Dynamics

This thesis focusses on learning from video data. Working with
video requires understanding and modelling the underlying dy-
namics of the system or scene that is captured. A fundamen-
tal question is how we choose to approach the time aspect of
these models. We can either choose a fixed discretization of time
(discretize-then-optimize), orwecanchoose tomodel thedynamics
in continuous time (optimize-then-discretize). The first option en-
tails defining a fixed grid of time points and limiting ourmodels to
only operate on these predefined time points. The second option
allows us to define models that are continuous in time, i.e., we
can use them at any time point, not just the fixed grid of time
points. Note that, since our computers are discrete machines,
in the end we will still discretize time. But the model itself is
agnostic of this and valid for any discretization choice. Since
nature is continuous, it makes sense to model the dynamics in
continuous time. This is the approach we take in this thesis.

The general approach for modeling continuous time dynamics

5
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is to use differential equations. Ordinary differential equations
(ODEs) allow modeling a system by its derivative function:

dx

dt
(t) = f(x), x(0) = x0 . (1.1)

In this example, f(x) governs the dynamics of this system, i.e.,
describes the derivative of the state x. Its solution at time t is
given by

x(t) = x0 +

∫ t

0
f(s) ds , (1.2)

which (for simple cases) can be solved analytically, or for most
applications, numerically. The field of differential equations is
vast and has been studied for centuries. There exist many types
of ODE solvers, the most basic one is probably the Euler method.
It consists of discretizing the time with a fixed timestep ∆t and
updating the discretized state accordingly:

xn+1 = xn + f(xn)∆t . (1.3)

Within machine learning, the field of neural differential equa-
tions (NDEs) has seen a surge in popularity. The idea to bridge the
worlds of neural networks and differential equations was popu-
larized by R. T. Chen et al. (2018). In their 2018 NIPS paper, rec-
ognized with a best paper award, they show how to learn ODEs by
backpropagating through a black-box ODE solver, i.e., using the
adjoint sensitivity method. Concretely, f(x) is parameterized as a
neural network, and the solution x(t) at some time t is ultimately
used in a loss function. This means the ODE can be learned end-
to-end, within a bigger framework, and the ODE solver is part of
this computation. By using the adjoint sensitivity method, the
solver can be black-box, i.e., does not need to be differentiable.
The implicit function theorem is used to calculate the gradient
of the solution with respect to the parameters of the ODE. See
the excellent tutorial by Kolter et al. (2020) for a more detailed
explanation and various examples and methodologies.

This approach was not novel in itself, as it is a common tech-
nique in control theory (Andersson et al. (2019)). However, the
application to neural networks led to a significant surge in pop-
ularity within the field of machine learning. Neural ODEs have

6
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been applied to many problems, including problems with no ex-
plicit dynamical aspects or time dynamics. For a more complete
overview of the field of neural differential equations, we refer to
Kidger (2021).

1.3 Physics Priors

This thesis investigates the use of physics priors in the context of
learning from video data. The world behaves mostly in certain,
predictable ways, governed by the laws of physics. Can we learn
more efficiently, robustly or accurately to understand the world
fromvideo data, by incorporating specific prior knowledge about
its underlying physics? This is explored in Chapter 2, where we
use the Lagrangianmechanics formalism to infuse physics priors
into our models.

In general, the dynamics of a physical systemcanbe described by
a second-order ordinary differential equation, we call the equa-
tions of motion:

q̈(t) = f(q(t), q̇(t), t) , (1.4)

where q(t) is a vector describing the current positions of all de-
grees of freedom of a system, q̇(t) its first time derivative (veloc-
ities) and q̈(t) its second time derivative (accelerations). Thus,
the full state of a physical system is described by (q(t), q̇(t)), its
positions and velocities. This means we can solve the equation
above, starting at some initial (q0, q̇0), and predict future states of
the system. As an example, let us think about a small particle
that can be approximated as a point mass. We can use New-
ton’s second law of motion to write the equations of motion as
f(q(t), q̇(t), t) = F (t)/m, where m is its mass and F (t) is the
sum of all forces acting on the particle. For more complicated
mechanical systems with coupled degrees of freedom, such as
the two-link pendulum given as an example below, we can write
down all forces and torques acting on the system, and inbetween
all the rigid bodies that constitute the system. One can work out
the equations of motion for such a system, but it requires prac-
tice and is not trivial, or even impossible for more complicated
systems with many degrees of freedom.

7
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On the other hand, Lagrangian mechanics offers an elegant and
powerful way to describe the dynamics of a physical system,
starting from the Lagrangian, which is the difference between the
kinetic energy T and the potential energy V of a system:

L(q, q̇, t) = T (q, q̇, t)− V (q, t) . (1.5)

Note that for any system, even when it has many degrees of free-
dom, L is a scalar function. The equations of motion can be de-
rived from the Lagrangian in a general fashion, using the Euler-
Lagrange equations. The underlying princple is the principle of
least action4. To explain this principle, we consider all smooth
paths q(t) that a system can take from some initial state q0 at
initial time t0 to some final state q1 at final time t1. For a given
physical system, there exist infinite possible paths that this sys-
tem can take to go from q0 to q1, and we want to find the actual
path taken by the system. For this, we first define the action as
as functional of the path q(t), i.e., the action is a function of the
function q(t):

S[q(t)] =

∫ t1

t0

L(q(t), q̇(t), t) dt . (1.6)

Theorem 1 (Principle of Least Action (Tong (2005))). The actual
path taken by the system is an extremum of S.

Sketch of the proof. For a one-dimensional system, consider
a small variation δq(t) of the path q(t), with δq(t0) = 0 and
δq(t1) = 0 such that the path still goes from q0 to q1. The action
of the path q(t) + δq(t) is then given by

S[q(t) + δq(t)] =

∫ t1

t0

L(q(t) + δq(t), q̇(t) + δq̇(t), t) dt . (1.7)

4. For an excellent, approachable explanation of this principle and its his-
tory, see the video by Veritasium and Steven Strogatz: https://youtu.be/Q10_
srZ-pbs
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We express the change of action as

δS = δ

[∫ t1

t0

Ldt

]
(1.8)

=

∫ t1

t0

δL dt (1.9)

=

∫ t1

t0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt . (1.10)

Using integration by parts on the second term we arrive at

δS =

∫ t1

t0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δq dt+

[
∂L

∂q̇
δq

]t1
t0

, (1.11)

where the final term vanishes because δq(t0) = δq(t1) = 0.
Because the actual path taken by the system is an extremum of
S, we require that δS = 0 for all variations δq(t):

0 =

∫ t1

t0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δq dt . (1.12)

This can only be true when the first term in the integrand is zero:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 . (1.13)

For the multi-dimensional case q(t) = (q1(t), . . . , qD(t)), we sim-
ply need to solve for every dimension and Eq. (1.14) becomes:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , D . (1.14)

We have now arrived at the Euler-Lagrange equations. These
equations give us the equations of motion for any physical sys-
tem, given its Lagrangian. Note that this result is not limited to
mechanical systems! In fact, (nearly) all the fundamental laws of
physics can be written using just one Lagrangian:

L =
√
g

(
R− 1

2
FµνF

µν + ψ̄D/ ψ

)
, (1.15)

9
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which describes gravity, the forces of nature (electromagnetism,
and weak and strong nuclear forces) and the dynamics of sub-
atomic particles. Still, the use of Lagrangian mechanics is limited
to mechanical systems in this work, primarily relevant for Chap-
ter 2. For a broader overview we refer to Tong (2005).

1.3.1 Non-conservative forces

The derivations above assume that the forces acting on the sys-
tem are conservative, i.e., they can be described by a potential
energy. This means, the sum of the potential and kinetic energy
T + V is conserved, i.e., stays constant over time. When we want
tomodelnon-conservative forces, such as frictionor externalmotor
inputs, we can add a term to the Lagrangian:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂W

∂qi
, i = 1, . . . , D , (1.16)

whereW is thework done by these non-conservative forces. This
is a generalization of the Euler-Lagrange equation, and allows us
to model a wider range of physical systems.

1.3.2 Example for a two-link pendulum

To offer the reader some intuition on how to derive the equations
of motion for a mechanical system using Lagrangian mechanics,
we consider a two-link pendulum, see Fig. 1.1. This system has
two degrees of freedom, thus we can use the angles of the links
with respect to the vertical y-axis as coordinates:

q =

[
q1
q2

]
, q̇ =

[
q̇1
q̇2

]
, (1.17)

The links have no mass and lengths of respectively l1 and l2, and
at the end of the links are pointmasses of respectivelym1 andm2.
We start bywriting theCartesian coordinates of the pointmasses,

10



1.3 Physics Priors

Figure 1.1 Two-link pendulum.

because it allows amore convenient way to describe the potential
and kinetic energy:

x1 = l1 sin(q1) , (1.18)
y1 = −l1 cos(q1) , (1.19)
x2 = l1 sin(q1) + l2 sin(q2) , (1.20)
y2 = −l1 cos(q1)− l2 cos(q2) , (1.21)

and their derivatives with respect to time:

ẋ1 = l1 cos(q1)q̇1 , (1.22)
ẏ1 = l1 sin(q1)q̇1 , (1.23)
ẋ2 = l1 cos(q1)q̇1 + l2 cos(q2)q̇2 , (1.24)
ẏ2 = l1 sin(q1)q̇1 + l2 sin(q2)q̇2 . (1.25)

The kinetic energy of the system is given by

T =
1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2

(
ẋ22 + ẏ22

)
(1.26)

=
1

2
m1l

2
1q̇

2
1 +

1

2
m2

(
l21q̇

2
1 + l22q̇

2
2 + 2l1l2q̇1q̇2 cos(q1 − q2)

)
(1.27)

=
1

2
(m1 +m2)l

2
1q̇

2
1 +

1

2
m2l

2
2q̇

2
2 +m2l1l2 cos(q1 − q2)q̇1q̇2 (1.28)

11



Chapter 1

where we used the trigonometric identity cos(q1) cos(q2) +
sin(q1) sin(q2) = cos(q1 − q2). The potential energy is

V = m1gy1 +m2gy2 (1.29)
= −m1gl1 cos(q1)−m2g(l1 cos(q1) + l2 cos(q2)) (1.30)
= −(m1 +m2)gl1 cos(q1)−m2gl2 cos(q2) , (1.31)

where g is the acceleration of gravity. Wefirst derive the sub parts
of Eq. (1.14):

∂L

∂q1
=
∂T

∂q1
− ∂V

∂q1
(1.32)

= −m2l1l2 sin(q1 − q2)q̇1q̇2

− (m1 +m2)gl1 sin(q1) , (1.33)
∂L

∂q2
=
∂T

∂q2
− ∂V

∂q2
(1.34)

= m2l1l2 sin(q1 − q2)q̇1q̇2 −m2gl2 sin(q2) , (1.35)
d

dt

(
∂L

∂q̇1

)
=

d

dt

(
∂T

∂q̇1
− ∂V

∂q̇1

)
(1.36)

=
d

dt

(
(m1 +m2)l

2
1q̇1 +m2l1l2 cos(q1 − q2)q̇2

)
(1.37)

= (m1 +m2)l
2
1q̈1 +m2l1l2 cos(q1 − q2)q̈2

−m2l1l2 sin(q1 − q2)(q̇1 − q̇2)q̇2 , (1.38)
d

dt

(
∂L

∂q̇2

)
=

d

dt

(
∂T

∂q̇2
− ∂V

∂q̇2

)
(1.39)

=
d

dt

(
m2l

2
2q̇2 +m2l1l2 cos(q1 − q2)q̇1

)
(1.40)

= m2l
2
2q̈2 +m2l1l2 cos(q1 − q2)q̈1

−m2l1l2 sin(q1 − q2)(q̇1 − q̇2)q̇1 , (1.41)

leading to an equation for each degree of freedom:

0 = (m1 +m2)l
2
1q̈1 +m2l1l2 cos(q1 − q2)q̈2

+m2l1l2 sin(q1 − q2)q̇
2
2 + (m1 +m2)gl1 sin(q1) , (1.42)

0 = m2l
2
2q̈2 +m2l1l2 cos(q1 − q2)q̈1

−m2l1l2 sin(q1 − q2)q̇
2
1 +m2gl2 sin(q2) . (1.43)

We can write this system of equations in vector form:

0 =M(q)q̈ + C(q, q̇)q̇ − F (q) , (1.44)

12



1.3 Physics Priors

where

M(q) =

[
(m1 +m2)l

2
1 m2l1l2 cos(q1 − q2)

m2l1l2 cos(q1 − q2) m2l
2
2

]
, (1.45)

C(q, q̇) =

[
0 m2l1l2 sin(q1 − q2)q̇2

−m2l1 sin(q1 − q2)q̇1 0

]
, (1.46)

F (q) =

[
−(m1 +m2)gl1 sin(q1)

−m2gl2 sin(q2)

]
. (1.47)

In fact, we could have derived these equations directly in this
general vector form. This is possible because we can write the
kinetic energy of any mechanical system as

T =
1

2
q̇TM(q)q̇, (1.48)

and both M(q) and V (q) are only a function of the positions q,
not of the velocities q̇. One can see that F (q) = −∂V

∂q , thus
representing the forces acting on the system due to the potential
energy. Finally, C(q, q̇) can be directly obtained fromM(q) by

Ck,j(q, q̇) =
D∑
i=1

cijk(q)q̇i , (1.49)

cijk =
1

2

(
∂Mk,j(q)

∂qj
+
∂Mk,i(q)

∂qj
− ∂Mi,j(q)

∂qk

)
q̇i , (1.50)

where cijk are the so-called Christoffel symbols, see Spong and
Vidyasagar (2008) for a more elaborate explanation. The C(q, q̇)q̇
term represents the centrifugal and Coriolis forces. If this term
would be zero (i.e., if M would be independent of q, and thus
static), our equations wouldmatch the well-knownNewton’s sec-
ond law of motion: force equals mass times acceleration. How-
ever, the system has couplings between its degrees of freedom,
i.e., the dynamics of the second link depend on the position and
velocity of the first link. The Lagrangian mechanics approach
naturally leads to these terms, without the need to take local and
rotating reference frames explicitly into account.

Finally, we can add an external input to the system, e.g., a motor
that applies a torque to the first link. This system is known as an
acrobot. The work done by this moter with torque τ is given by

W = τ q̇1 . (1.51)
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Thus, the full equations of motion for the acrobot are
(using Eq. (1.16))

M(q)q̈ + C(q, q̇)q̇ − F (q) =

[
τ
0

]
. (1.52)

The full state of the system is described by its positions and ve-
locities:

x =


q1
q2
q̇1
q̇2

 . (1.53)

When we know x at time t, the equations of motion allow us
to predict the state of the system at some future time T > t,
since the system is deterministic. We can easily write the second
order differential equations as a system of first order differential
equations:

dx

dt
(t) =


q̇1
q̇2

M−1(q)

([
τ
0

]
− C(q, q̇)q̇ + F (q)

)
 , (1.54)

such that it is compatible with Sec. 1.2. There exists no analyt-
ical solution for a two-link pendulum. Its equation of motion
should be solved numerically, e.g., using the Euler method men-
tioned above or more advanced methods, such as Runge-Kutta,
that achieve a higher accuracy. Typically, one can use implemen-
tations of ODE solvers available in scientific computing libraries,
such as SciPy (Virtanen et al. (2020))5.

1.4 Stochastic Dynamics

While the previous sections handle deterministic dynamics, the
world is not always deterministic. At least not in the sense that
we have full knowledge of the multitude of different variables

5. See https://scipython.com/blog/the-double-pendulum/ for an example of
an implementation of this system.
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1.5 Inference

that influence the behaviour of a given system. As an example,
the equations of motion of the double pendulum in Sec. 1.3.2 can
be elegantly derived, but a number of assumptions were made.
e.g., the influence of the air on the motion of the pendulum was
ignored. While it is theoretically possible to take this into account
in a deterministic way, this is not at all practical. Let alone,
how can one measure the full state of the air surrounding this
system, all the pressure differences and airflows at a fine-grained
scale? Alternatively, we can model the influence of the air and
other unknown effects as noise. Concretely, this means our equa-
tions ofmotion areno longer a deterministic ordinarydifferential
equation (ODE), but rather a stochastic differential equation (SDE)
(see Sec. 1.6.1).

A second focus of this thesis is thus learning stochastic models
from video. But what exactly does it mean to learn from data?
Inference is the process of estimating the parameters of a model
from data. In the case of ODEs, we can estimate the parameters
of themodel byminimizing the difference between the predicted
and observed data. This is typically done using maximum likeli-
hood estimation (MLE). But in the case of SDEs, the situation is
more complicated. The SDE is a stochastic process, whichmeans
it is not possible to predict the future state of the system exactly.
Instead, we can only predict the probability distribution of the
future state of the system. This means we need to use a different
approach to estimate the parameters of the model: variational
inference (VI).

1.5 Inference

Let us say we happen to be interested in modeling the chest
circumference of Scottish soldiers from the early nineteenth cen-
tury. At least, that was what Adolphe Quetelet6 was interested
in, when he did some calculations on this data. He found that
the distribution of the chest circumference was approximately
normally distributed, which spurred his interest in the concept

6. Adolphe Quetelet was born in Ghent in 1796, and received the first doctor-
ate in mathematics ever awarded by Ghent University, in 1819.
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of the average man (Quetelet (1842)). He started collecting and
investigating all kinds of humanmeasurements and believed per-
fectionwas represented by the average, where any deviation from
this should be considered an error. Among these ideas was the
Quetelet Index, which is nowadays better know as the body mass
index (BMI).

What we are interested in, is how to find the parameters of a
model that best describes some given data. If, as Quetelet did
for the Scottish soldiers, we use a Gaussian distribution, it is
generally feasible to find its parameters. There are only two:
the mean µ and the variance σ2, and we can straightforwardly
estimate them from the data. A bit more formally, if we denote
the circumference of the chest of a Scottish soldier as X, we
describe the probability distribution ofX as

p(X) = N (µ, σ2) . (1.55)

While many statistical methods assume Gaussian distributions
due to their mathematical convenience, real-world phenomena
often deviate significantly from this idealized framework. Many
processes in nature, society, and complex systems exhibit non-
Gaussian behavior, heavy tails, multimodality, or discrete struc-
tures that cannot be adequately captured by simple parametric
distributions. Moreover, the quantitieswewish to understand are
frequently not directly observable or measurable, as the funda-
mental processes that govern a system’s behavior remain hidden
from direct measurement.

1.5.1 Latent variable models

When the true variables of interest are hidden, we work with la-
tent variable models where the variables we want to understand,
denoted as Z, are latent and we can only observe their indirect
effects through noisy, often non-linear measurements denoted
as X. This framework naturally leads us to consider both our
prior beliefs about the latent variables and how these beliefs are
updated through observed evidence.

The prior distribution p(Z) represents our initial beliefs or as-
sumptions about the latent variables before observing any data.
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1.5 Inference

This prior represents our domain knowledge, theoretical under-
standing, or simply our assumptions about reasonable values for
the hidden variables. In Bayesian inference, the prior serves as
a regularizing force that prevents overfitting and incorporates
external knowledge into the inference process.

Using Bayes’ theorem, the prior is combined with the likelihood
of the observations to yield the posterior distribution:

p(Z | X) =
p(X | Z)p(Z)

p(X)
. (1.56)

The posterior p(Z | X) represents our updated beliefs about
the latent variables after incorporating the observed evidence
X. It balances the information from the data, captured by the
likelihood p(X | Z), with our prior knowledge p(Z). The denom-
inator p(X) is the marginal likelihood or evidence. Note that the
posterior is proportional to the product of the likelihood and the
prior. When the prior is informative, it can significantly improve
inference quality, particularly in settings with limited data. On
the other hand, when data is abundant, the likelihood dominates
and the posterior becomes less sensitive to the choice of prior.

1.5.2 Inference as optimization

When the relationship between X and Z is complicated (e.g., X
can be an image, or a sequence ofwords, or even a Ph.D. disserta-
tion), it is often infeasible (intractable) to calculate the posterior
distribution p(Z | X) exactly. This arises because the posterior
often involves high-dimensional integrals that cannot be solved
analytically.

Variational inference (VI) is one of the ways to handle this prob-
lem. We approximate the posterior distribution by a so-called
variational distribution q(Z):

q(Z) ≈ p(Z | X) . (1.57)

By choosing the form of q(Z) wisely, it will have a structure we
can work with. The goal of VI is to find the parameters of q(Z)
that best approximate the posterior distribution p(Z | X). This is
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done by minimizing a dissimilarity metric, such as the Kullback-
Leibler (KL) divergence, between q(Z) and p(Z | X):

argmin
q(Z)

DKL (q(Z) || p(Z | X)) . (1.58)

The KL divergence is not directly computable, because it involves
the posterior distribution p(Z | X). However, we define the
evidence lower bound (ELBO) as

ELBO = E [log p(X | Z)]−DKL (q(Z) || p(Z)) . (1.59)

This means the ELBO is the sum of the expected log likelihood of
the model p(X | Z) and the negative KL divergence between the
variational distribution q(Z) and the prior distribution p(Z). The
first term measures how well the model explains the observed
data when the latent variables are distributed according to q(Z).
The second terms acts as a regularization loss that prevents the
variational distribution from deviating too much from the prior
distribution p(Z). This regularization term is important in the
context of balancing prior knowledge and observed evidence. A
high value indicates that the variational distribution substantially
contradicts the prior beliefs. The ELBO thus naturally incorpo-
rates both the quality of data fit and the consistency with prior
assumptions.

One can show that maximizing the ELBO is equivalent to mini-
mizing the above KL divergence (Blei et al. (2017)). Finally, since
the ELBO is a function of the parameters of the variational distri-
bution q(Z)we can optimize it using gradient-based optimization
methods. This is the essence of variational inference. See Bishop
and Nasrabadi (2006), Ganguly and Earp (2021), and Goodfellow
et al. (2016) formoredetailed introductions andAlemi et al. (2018)
and Poole et al. (2019) for a more information theoretic perspec-
tive.

1.6 Stochastic Calculus

In this section we explain some basic concepts from stochastic
calculus, or more specifically Itô calculus. No attempt is made to
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provide a general overview, but rather to provide the necessary
background for the rest of this dissertation. Comprehensive in-
troductions can be found in Särkkä and Solin (2019) andØksendal
(2003).

1.6.1 Stochastic differential equations

Stochastic differential equations (SDEs) are a way to describe the
dynamics of a stochastic process. For simplicity, we consider a
one-dimensional stochastic process x(t) ∈ R. It can be described
as a stochastic differential equation (SDE) of the form:

dx(t) = b (x(t), t) dt+ σ (x(t), t) dW (t) , (1.60)

where b : R × R → R is the drift function, σ : R × R → R
is the diffusion function and W (t) ∈ R is a Wiener process.
TheWiener process is a continuous-time stochastic process with
independent increments andnormally distributed increments:

dW (t) ∼ N (0,dt) . (1.61)

In the context of this dissertation it is synonymouswithBrownian
motion (BM), but we will mostly use the termWiener process to
differentiate more clearly with fractional Brownian motion (fBM)
(see Chapter 3).

One can see that if the diffusion σ(x(t), t) would be zero, the
process defined by Eq. (1.60) falls back to an ordinary differential
equation (ODE, see Sec. 1.2). The difussion term is driven by
the stochastic Wiener process, introducing randomness in the
process. This means, solving an SDE actually means sampling
from a distribution of possible paths, i.e., everytime you solve an
SDE you will have a different result.

Similar to ODEs, SDEs can be solved numerically using various
methods. The simplest method is the Euler-Maruyama method,
which is a generalization of the Euler method for ODEs:

xn+1 = xn + b(xn, tn)∆t+ σ(xn, tn)∆Wn , (1.62)

where∆Wn ∼ N (0,∆t).
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1.6.2 Itô formula

A crucial difference between ordinary calculus and Itô calculus
is described by the Itô formula. This formula is the Itô calculus
equivalent of the chain rule. Consider an arbitrary scalar func-
tion φ(x(t), t) of the process above, then the differential of φ (or
the Itô SDE for φ) is given as

dφ =
∂φ

∂t
dt+

∂φ

∂x
dx+

1

2

∂2φ

∂x2
dx2 . (1.63)

This contrasts with ordinary calculus, where the last term is not
present. When working this out, the following rules are ob-
served:

dW dt = 0 , (1.64)
dW 2 = dt . (1.65)

Example

As an example, we will transform the SDE defined by Eq. (1.60)
using y = log(x):

dy = x−1 dx− 1

2
x−2 dx2 (1.66)

= x−1 (b (x, t) dt+ σ (x, t) dW )− 1

2
x−2σ (x, t)2 dt (1.67)

= e−y (b (ey, t) dt+ σ (ey, t) dW )− 1

2
e−2yσ (ey, t)2 dt (1.68)

=

(
e−yb (ey, t)− 1

2
e−2yσ (ey, t)2

)
dt+ e−yσ (ey, t) dW .

(1.69)

1.6.3 Itô isometry

We will often calculate variances of stochastic processes given
as Itô integrals. Itô isometry is a useful tool to calculate these

20
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variances. Given two stochastic processesX(t) and Y (t) defined
by

X(t) =

∫ t

0
f(s) dW (s) , (1.70)

Y (t) =

∫ t

0
g(s) dW (s) . (1.71)

Itô isometry states that

E [X(t1)Y (t2)] =

E
[(∫ t1

0
f(s) dW (s)

)(∫ t2

0
g(s) dW (s)

)]
(1.72)

=

∫ min(t1,t2)

0
f(s)g(s) ds . (1.73)

Furthermore, since the expectation of a stochastic integral is al-
ways zero, this directly gives us the the covariance betweenX(t)
and Y (t):

E [X(t1)] = 0, (1.74)
E [Y (t2)] = 0, (1.75)

Cov (X(t1), Y (t2)) =

∫ min(t1,t2)

0
f(s)g(s) ds . (1.76)

1.7 Gamma Function

Here an introduction to the gamma function and some of its
properties is provided, since it will be used in Chapter 3. The
gamma function Γ(z) is an extension of the factorial function. It
is defined for all complex numbers z ∈ C, except for the non-
positive integers. For positive integers n = z, it reduces to the
factorial function:

Γ(n) = (n− 1)! . (1.77)

For complex numbers z with a positive real part it can be defined
by this integral:

Γ(z) =

∫ ∞

0
tz−1e−t dt . (1.78)
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One useful property of the gamma function is the recursion rela-
tion, which shows the connection between the gamma function
and the factorial function:

Γ(z + 1) = zΓ(z) . (1.79)

We can also define incomplete gamma functions, where the inte-
gral is truncated. The upper incomplete gamma function:

Γ(z, x) =

∫ ∞

x
tz−1e−t dt, (1.80)

and the lower incomplete gamma function7:

γ(z, x) =

∫ x

0
tz−1e−t dt . (1.81)

Sometimes these are easier to work with in their normalized ver-
sions:

Q(z, x) =
Γ(z, x)

Γ(z)
=

1

Γ(z)

∫ ∞

x
tz−1e−t dt, (1.82)

P (z, x) =
γ(z, x)

Γ(z)
=

1

Γ(z)

∫ x

0
tz−1e−t dt . (1.83)

These are some of their properties useful in this work:

Γ(z, 0) = Γ(z), (1.84)
γ(z, 0) = 0, (1.85)

Γ(z, x) + γ(z, x) = Γ(z), (1.86)
Q(z, 0) = 1, (1.87)
P (z, 0) = 0, (1.88)

Q(z, x) + P (z, x) = 1 . (1.89)

While the functions presented in this section have no closed-
form solutions, implementations of their numerical evaluation
are readily available in standard scientific computing libraries
such as SciPy (Virtanen et al. (2020)), or in specialized machine
learning libraries such as PyTorch (Paszke et al. (2019)) and
JAX (Bradbury et al. (2018)).

7. Outside of this section, the use of γ is reserved for theMA-fBMparameters
(Chapter 3), to avoid any possible confusion.
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1.8 Motivation and Goals of this Dissertation

Learning models from video entails learning the underlying dy-
namics of a system from its visual representation. An accurate
model is capable of predicting future video frames, given a se-
quence of past frames. This is useful for many applications, such
as robotics, where themodel can be used to control a robot based
on its visual input. However, learning models from video is a
challenging task, as it requires the model to learn the underly-
ing dynamics of the system from its visual representation. One
fundamental choice in this regard is whether we model time dis-
cretely (discretize-then-optimize) or in a continuous way (optimize-
then-discretize). In this thesis we choose the continuous-time ap-
proach (see Sec. 1.2).

Physics Priors. Can the learning of video models benefit from
introducing physics priors? Physics priors are a way to incorpo-
rate prior knowledge about the underlying dynamics of a system
into the learning process. Specifically, we can use Lagrangian
dynamics to model the underlying dynamics of a system, as in-
troduced in Sec. 1.3. This entails modeling the system explicitly
using its potential energy and mass matrix. Our contributions
towards this research question are presented in Chapter 2.

Long-range Stochastic Dynamics. Modeling stochastic
dynamics in continuous-time is typically done using stochastic
differential equations (SDEs) driving by Brownian motion (BM)
(see Sec. 1.6). The increments of BM are independent, which
means this noise process has no memory. Can the learning
of video models benefit from using long-range stochastic
dynamics? Stochastic differential equations (SDEs) driven by
fractional Brownian motion (fBM) are a powerful tool to model
stochastic systems with long-range dependence. However, the
inference of the parameters of these models is challenging,
due to the non-Markovian nature of fBM. This is precisely the
research question we address in Chapter 3, where we aim to
learn the parameters of SDEs driven by a Markov approximation
of fBM.
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Figure 1.2 Overview of the research topics in this dissertation.

Efficient Learning of SDEs. Within the field ofmachine learning,
the use of neural networks to model SDEs has gained popular-
ity. However, the training of these models is computationally
expensive, due to the iterative nature ofmaximizing the evidence
lower bound (ELBO). How can we more efficiently train neural
SDEs? We address this question in Chapter 4, where a method
is proposed to train neural SDEs leveraging stochastic optimal
control.

This dissertation answers the above three main goals to
ultimately work towards learning from video in continuous-time
using physics priors and fractional noise.
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1.9 Research Contributions and Overview of this
Dissertation

We summarize the following main research contributions of this
dissertation:

1. In Chapter 2, we introduce KeyCLD, a framework to learn
constrained Lagrangian dynamics from images. We are the
first to use learned keypoint representations from images to
learn Lagrangian dynamics. We show that keypoint repre-
sentations derived from images can directly be used as po-
sitional state vector for constrained Lagrangian dynamics,
expressed in Cartesian coordinates.

2. We show how to control constrained Lagrangian dynamics
in Cartesian coordinates with energy shaping, where the
state is estimated from images.

3. KeyCLD is empirically validated on the pendulum, cartpole
and acrobot systems from dm_control (Tunyasuvunakool
et al. (2020)). We show that KeyCLD can be learned on these
systems, whether they are unactuated, underactuated or
fully actuated. We compare quantitatively with Lag-caVAE,
Lag-VAE (Zhong and Leonard (2020)) and HGN (Toth et
al. (2020)), and investigate the benefit of the Lagrangian
prior and the constraint function. KeyCLD achieves
the highest valid prediction time on all benchmarks
(see Tab. 2.2).

4. In Chapter 3, we make accessible the relatively uncharted
Markovian embedding of fractional Brownian motion
(fBM) and its strong approximation, to the machine
learning community. This allows us to employ the
traditional machinery of stochastic differential equations
(SDEs) in working with non-Markovian systems.

5. We show how to balance the contribution of Markov
processes by optimising for the combination coefficients
in closed form. We further estimate the (time-dependent)
Hurst index from data.
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6. Wederive the evidence lower bound (ELBO) for SDEs driven
by approximate fBM of both Types I and II.

7. We model the drift, diffusion and control terms in our
framework by neural networks, and propose a novel
architecture for video prediction.

8. In Chapter 4, we present a method for efficient training of
neural SDEs using stochastic optimal control.

Chapter 2: KeyCLD: Learning Constrained Lagrangian
Dynamics in Keypoint Coordinates from Images

We present KeyCLD, a framework to learn Lagrangian dynam-
ics from images. Learned keypoints represent semantic land-
marks in images and can directly represent state dynamics. We
show that interpreting this state as Cartesian coordinates, cou-
pled with explicit holonomic constraints, allows expressing the
dynamics with a constrained Lagrangian. KeyCLD is trained un-
supervised end-to-end on sequences of images. Our method ex-
plicitly models the mass matrix, potential energy and the input
matrix, thus allowing energy based control. We demonstrate
learning of Lagrangian dynamics from images on the dm_control
pendulum, cartpole and acrobot environments. KeyCLD can be
learned on these systems, whether they are unactuated, under-
actuated or fully actuated. Trained models are able to produce
long-termvideopredictions, showing that the dynamics are accu-
rately learned. We compare with Lag-VAE, Lag-caVAE and HGN,
and investigate the benefit of the Lagrangian prior and the con-
straint function. KeyCLD achieves the highest valid prediction
time on all benchmarks. Additionally, a very straightforward
energy shaping controller is successfully applied on the fully ac-
tuated systems.

Chapter 3: Variational Inference of SDEs Driven by Fractional
Noise

We present a novel variational framework for performing
inference in (neural) stochastic differential equations (SDEs)
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driven by Markov-approximate fractional Brownian motion
(fBM). SDEs offer a versatile tool for modeling real-world
continuous-time dynamic systems with inherent noise and
randomness. Combining SDEs with the powerful inference
capabilities of variational methods, enables the learning
of representative distributions through stochastic gradient
descent. However, conventional SDEs typically assume the
underlying noise to follow a Brownian motion (BM), which
hinders their ability to capture long-term dependencies. In
contrast, fractional Brownian motion (fBM) extends BM to
encompass non-Markovian dynamics, but existing methods
for inferring fBM parameters are either computationally
demanding or statistically inefficient. In this chapter, building
upon the Markov approximation of fBM, we derive the evidence
lower bound essential for efficient variational inference of
posterior path measures, drawing from the well-established
field of stochastic analysis. Additionally, we provide a closed-
form expression for optimal approximation coefficients and
propose to use neural networks to learn the drift, diffusion and
control terms within our variational posterior, leading to the
variational training of neural-SDEs. In this framework, we also
optimize the Hurst index, governing the nature of our fractional
noise. Beyond validation on synthetic data, we contribute a
novel architecture for variational latent video prediction,—an
approach that, to the best of our knowledge, enables the first
variational neural-SDE application to video perception.

Chapter 4: Efficient Training of Neural SDEs Using Stochastic
Optimal Control

We present a hierarchical, control theory inspired method for
variational inference (VI) for neural stochastic differential equa-
tions (SDEs). While VI for neural SDEs is a promising avenue for
uncertainty-aware reasoning in time-series, it is computationally
challenging due to the iterative nature of maximizing the ELBO.
In this work, we propose to decompose the control term into
linear and residual non-linear components and derive an optimal
control term for linear SDEs, using stochastic optimal control.
Modeling the non-linear component by a neural network, we
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showhow to efficiently trainneural SDEswithout sacrificing their
expressive power. Since the linear part of the control term is
optimal and does not need to be learned, the training is initialized
at a lower cost and we observe faster convergence.

Chapter 5: Conclusion and Future Work

The final chapter presents a conclusion of this dissertation. Fu-
ture work directions are discussed, most notably a relatively de-
tailed exposition of a novel approach for an improved Markov
approximation of fractional Brownian motion.
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Figure 2.1 KeyCLD learns Lagrangian dynamics from images.
(a) An observation of a dynamical system is processed by a key-
point estimator model. (b) The model represents the positions
of the keypoints with a set of spatial probability heatmaps. (c)
Cartesian coordinates are extracted using spatial softmax and
used as state representations to learn Lagrangian dynamics. (d)
The information in the keypoint coordinates bottleneck suffices
for a learned renderer model to reconstruct the original observa-
tion, including background, reflections and shadows. The key-
point estimator model, Lagrangian dynamics models and ren-
derer model are jointly learned unsupervised on sequences of
images.

We present KeyCLD, a framework to learn Lagrangian dynam-
ics from images. Learned keypoints represent semantic land-
marks in images and can directly represent state dynamics. We
show that interpreting this state as Cartesian coordinates, cou-
pled with explicit holonomic constraints, allows expressing the
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dynamics with a constrained Lagrangian. KeyCLD is trained un-
supervised end-to-end on sequences of images. Our method ex-
plicitly models the mass matrix, potential energy and the input
matrix, thus allowing energy based control. We demonstrate
learning of Lagrangian dynamics from images on the dm_control
pendulum, cartpole and acrobot environments. KeyCLD can be
learned on these systems, whether they are unactuated, under-
actuated or fully actuated. Trained models are able to produce
long-termvideopredictions, showing that the dynamics are accu-
rately learned. We compare with Lag-VAE, Lag-caVAE and HGN,
and investigate the benefit of the Lagrangian prior and the con-
straint function. KeyCLD achieves the highest valid prediction
time on all benchmarks. Additionally, a very straightforward
energy shaping controller is successfully applied on the fully ac-
tuated systems.

This chapter addresses the first research goal, namely how to
incorporate physics priors in the form of Lagrangian dynamics,
while learning from video (see Sec. 1.8). The models are de-
fined in continuous-time, as explained and motivated in Sec. 1.2.
For amore comprehensive introduction to Lagrangian dynamics,
see Sec. 1.3. The work in this chapter is based on Daems, Taets,
et al. (2024).

2.1 Introduction and Related Work

Learning dynamical models from data is a crucial aspect while
striving towards intelligent agents interacting with the physical
world. Understanding the dynamics and being able to predict
future states is paramount for controlling autonomous systemsor
robots interacting with their environment. For many dynamical
systems, the equations ofmotion canbederived fromscalar func-
tions such as the Lagrangian or Hamiltonian. This strong physics
prior enables more data-efficient learning and holds energy con-
serving properties. Greydanus et al. (2019) introduced Hamilto-
nian neural networks. By using Hamiltonian mechanics as in-
ductive bias, the model respects exact energy conservation laws.
Michael Lutter et al. (2018) and Lutter et al. (2019) pioneered
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the use of Lagrangian mechanics as physics priors for learning
dynamicalmodels fromdata. Cranmer et al. (2020) expanded this
idea to amore general setting. Bymodelling the Lagrangian itself
with a neural network instead of explicitlymodellingmechanical
kinetic energy, they canmodel physical systems beyond classical
mechanics. Finzi et al. (2020) introduced learning of Lagrangian
or Hamiltonian dynamics in Cartesian coordinates, with explicit
constraints. This enables more data efficient models, at the cost
of providing extra knowledge about the system in the form of a
constraint function.

Zhong et al. (2020) included external input forces and energy
dissipation, and introduced energy-based control by leveraging
the learned energy models.

2.1.1 Learning Lagrangian dynamics from images

It is often not possible to observe the full state of a system
directly. Cameras provide a rich information source, containing
the full state when properly positioned. However, the difficulty
lies in interpreting the images and extracting the underlying
state. As was recently argued by Lutter and Peters (2021),
learning Lagrangian or Hamiltonian dynamics from realistic
images remains an open challenge. The majority of related
work (Greydanus et al. (2019), Toth et al. (2020), Saemundsson
et al. (2020), Allen-Blanchette et al. (2020), and Botev et al. (2021))
use a variational autoencoder (VAE) framework to represent
the state in a latent space embedding. The dynamics model is
expressed in this latent space. Zhong and Leonard (2020) use
interpretable coordinates, however their state estimator module
needs full knowledge of the kinematic chain, and the images are
segmented per object. Tab. 2.1 provides an overview of closely
related work in literature.

2.1.2 Keypoints

Instead of using abstract latent embeddings, our method lever-
ages fully convolutional keypoint estimatormodels to observe the
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Table 2.1 An overview of closely related Lagrangian or Hamil-
tonian models. Lag-caVAE (Zhong and Leonard (2020)) is capa-
ble of modelling external forces and learning from images, but
individual moving bodies need to be segmented in the images,
on a black background. It additionally needs full knowledge of
the kinematic chain, which is more prior information than the
constraint function for ourmethod (see Section 2.2.3). HGN (Toth
et al. (2020)) needs no prior knowledge of the kinematic chain,
but is unable to model external forces. CHNN (Finzi et al. (2020))
expresses Lagrangian or Hamiltonian dynamics in Cartesian co-
ordinates, but can not be learned from images. Ourmethod, Key-
CLD, is capable of learning Lagrangian dynamics with external
forces, from unsegmented images with shadows, reflections and
backgrounds.

H
G
N

La
g-
ca
VA

E

CH
N
N

Ke
yC

LD
External forces (control) X X
Interpretable coordinates X X X
Cartesian coordinates X X
Learns from images X X X
Learns from unsegmented images X X

Needs kinematic chain prior X
Needs constraint prior X X

state from images. Objects can be represented with one or more
keypoints, fully capturing the position and orientation. Because
themodel is fully convolutional, it is also translation equivariant,
hence exhibiting higher data efficiency. Zhou et al. (2019) used
keypoints for object detection, with great success. Keypoint de-
tectors are commonly used for human pose estimation (Zheng
et al. (2020)). More closely related to this work, keypoints can be
learned for control and roboticmanipulation (B.Chenet al. (2021)
and Vecerik et al. (2021)). Minderer et al. (2019) learn unsuper-
vised keypoints from videos to represent objects and dynamics.
Jaques et al. (2021) leverage keypoints for system identification
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and dynamic modelling. Jakab et al. (2018) learn a keypoint
representation unsupervised by using it as an information bottle-
neck for reconstructing images. The keypoints represent seman-
tic landmarks in the images and generalize well to unseen data.
It is the main inspiration for the use of keypoints in our work.

2.1.3 Contributions

Concretely, our work makes the following contributions. (1)We
introduce KeyCLD, a framework to learn constrained Lagrangian
dynamics from images. We are the first to use learned keypoint
representations from images to learn Lagrangian dynamics.
We show that keypoint representations derived from images
can directly be used as positional state vector for constrained
Lagrangian dynamics, expressed in Cartesian coordinates. (2)
We show how to control constrained Lagrangian dynamics
in Cartesian coordinates with energy shaping, where the
state is estimated from images. (3) KeyCLD is empirically
validated on the pendulum, cartpole and acrobot systems from
dm_control (Tunyasuvunakool et al. (2020)). We show that
KeyCLD can be learned on these systems, whether they are
unactuated, underactuated or fully actuated. We compare
quantitatively with Lag-caVAE, Lag-VAE (Zhong and Leonard
(2020)) and HGN (Toth et al. (2020)), and investigate the benefit
of the Lagrangian prior and the constraint function. KeyCLD
achieves the highest valid prediction time on all benchmarks
(see Tab. 2.2).

2.2 Constrained Lagrangian Dynamics

2.2.1 Lagrangian Dynamics

For a dynamical systemwithm degrees of freedom, a set of inde-
pendent generalized coordinates q ∈ Rm represents all possible
kinematic configurations of the system. The time derivatives
q̇ ∈ Rm are the velocities of the system. If the system is fully
deterministic, its dynamics can be described by the equations
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of motion, a set of second order ordinary differential equations
(ODEs):

q̈ = f(q(t), q̇(t), t,u) , (2.1)

where u are the external forces acting on the system. From a
known initial value (q, q̇), we can integrate f through time to
predict future states of the system. It is possible tomodel f with a
neural network, and train the parameters with backpropagation
through an ODE solver (R. T. Chen et al. (2018)).

However, by expressing the dynamics with a Lagrangian we in-
troduce a strong physics prior (Lutter et al. (2019)):

L(q, q̇) = T (q, q̇)− V (q) , (2.2)

where T is the kinetic energy and V is the potential energy of the
system. For any mechanical system the kinetic energy is defined
as:

T (q, q̇) =
1

2
q̇>M(q)q̇ , (2.3)

where M(q) ∈ Rm×m is the positive semi-definite mass matrix.
Ensuring that M(q) is positive semi-definite can be done by ex-
pressing M(q) = L(q)L(q)>, where L(q) is a lower triangular
matrix. It is now possible to describe the dynamics with two
neural networks, one for the mass matrix and one for the po-
tential energy. Since both are only in function of q and not q̇,
and expressing the mass matrix and potential energy is more
straightforward than expressing the equations of motion, it is
generally much more simple to learn dynamics with this frame-
work. In other words, adding more physics priors in the form
of Lagrangian mechanics, makes learning the dynamics more
robust and data-efficient (Michael Lutter et al. (2018), Lutter et
al. (2019), Cranmer et al. (2020), and Lutter and Peters (2021)).

The Euler-Lagrange equations (2.4) allow transforming the La-
grangian into the equations of motion by solving for q̈:

d

dt
∇q̇L −∇qL = ∇qW , (2.4)

∇qW = g(q)u , (2.5)
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where W is the external work done on the system, e.g. forces
applied for control. The input matrix g ∈ Rm×l allows intro-
ducing external forces u ∈ Rl for modelling any control-affine
system. If the external forces and torques are aligned with the
degrees of freedom q, g can be a diagonal matrix or even an
identity matrix. More generally, if no prior knowledge is present
about the relationshipbetweenu and the generalized coordinates
q, g(q) : Rm → Rm×l is a function of q and can be modelled
with a third neural network Zhong et al. 2020. If the system is
fully actuated, the number of actuaters equals the number of
degrees of freedom (l = m), if it is underactuated not all degrees
of freedom are actuated (l < m).

2.2.2 Cartesian coordinates

Figure 2.2 Example of a constraint function Φ(x) to express
the cartpole system with Cartesian coordinates. The cartpole
system has 2 degrees of freedom, but is expressed in x ∈ R4.
Valid configurations of the system in R4 are constrained on a
manifold defined by 0 = Φ(x). The first constraint only allows
horizontal movement of x1, and the second constraint enforces a
constant distance between x1 and x2. Although unknown l1 and
l2 constants are present inΦ(x), their values are irrelevant, since
only the Jacobian ofΦ(x) is used in our framework (see equation
(2.14)). See 2.7.4 for more examples of constraint functions.

Finzi et al. (2020) showed that expressing Lagrangian mechanics
in Cartesian coordinates x ∈ Rk instead of independent general-
ized coordinates q ∈ Rm has several advantages:

L(x, ẋ) = 1

2
ẋ>Mẋ− V (x) . (2.6)
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The mass matrix M no longer changes in function of the state,
and is thus static. This means that a neural network is no longer
required to model the mass matrix, simply the values in the ma-
trix itself are optimized. The potential energy V (x) is now in
function of x. Expressing the potential energy in Cartesian co-
ordinates can often be simpler than in generalized coordinates.
e.g., for gravity, this is simply a linear function. Also the input
matrix g(x) is now in function of x, and the shape is k × l.
Multiplying the input matrix with the input vector g(x)u results
in force vectors acting in Cartesian space. The input matrix is
modelled with a fully connected neural network, of which the
output vector is reshaped in the correct shape.

Because we are now expressing the system in Cartesian coordi-
nates we additionally need a set of n holonomic constraint func-
tions Φ(x) : Rk → Rn. These guarantee a valid configuration
of the system, and a correct number of degrees of freedom: m =
k−n (see Fig. 2.2). The constrainedEuler-Lagrange equations are
expressed with a vector λ ∈ Rn containing Lagrange multipliers
for the constraints (Finzi et al. (2020) and Lanczos (2020)):

d

dt
∇ẋL(x, ẋ)−∇xL(x, ẋ) = g(x)u+DΦ>(x)λ , (2.7)

with D being the Jacobian operator. Because the mass matrix is
static1, this is simplified to:

Mẍ+∇xV (x) = g(x)u+DΦ>(x)λ , (2.8)

ẍ = M−1f(x)+M−1DΦ>(x)λ , f(x) = −∇xV (x)+g(x)u . (2.9)

Calculating twice the time derivative of the constraint conditions
yields:

0 ≡ Φ(x)

0 = Φ̇(x)

0 = DΦ(x)ẋ

0 = DΦ̇(x)ẋ+DΦ(x)ẍ .

(2.10)

1. In otherwords, the centrifugal andCoriolis forces are zero because Ṁ = 0
and∇xM = 0.
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The Lagrange multipliers λ are solved by substituting ẍ from
equation (2.9) in equation (2.10):

−DΦ̇(x)ẋ = DΦ(x)M−1f(x) +DΦ(x)M−1DΦ>(x)λ, (2.11)
λ =[

DΦ(x)M−1DΦ>(x)
]−1 [

DΦ(x)M−1f(x) +DΦ̇(x)ẋ
]

(2.12)

We use the chain rule a second time to get rid of the time deriva-
tive ofDΦ(x):

DΦ̇(x)ẋ = 〈D2Φ(x), ẋ〉ẋ . (2.13)

Substituting λ in (2.9) we finally arrive at:

ẍ = M−1f(x)−M−1DΦ>(x)
[
DΦ(x)M−1DΦ>(x)

]−1

·
[
DΦ(x)M−1f(x) + 〈D2Φ(x), ẋ〉ẋ

]
. (2.14)

Since time derivatives of functions modelled with neural net-
works are no longer present, equation (2.14) can be implemented
in an autograd library which handles the calculation of gradients
and Jacobians automatically. See 2.7.1 for details and the imple-
mentation of equation (2.14) in JAX (Bradbury et al. (2018)).

Note that in equation (2.14) only the Jacobian ofΦ(x) is present.
This means that there is no need to learn explicit constants in
Φ(x), such as lengths or distances between points. Rather that
constant distances and lengths through time are enforced by
DΦ(x)ẋ = 0. We use this property to our advantage since this
simplifies the learning process. See Fig. 2.2 for an example of
the cartpole system expressed in Cartesian coordinates and a
constraint function.

2.2.3 Constraints as prior knowledge

The given constraint functionΦ(x) adds extra prior information
to ourmodel. Alternatively, we could use amapping functionx =
F(q). This leads directly to an expression of the Lagrangian in
Cartesian coordinates using ẋ = DF(q)q̇:

L(q, q̇) = 1

2
q̇>DF(q)>MDF(q)q̇− V (F(q)) , (2.15)
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from which the equations of motion can be derived using the
Euler-Lagrange equations, similar to equation (2.14). In terms of
explicit knowledge about the system, the mapping x = F(q) is
equivalent to the kinematic chain as required for the method of
Zhong and Leonard (2020). Using the constraint function is how-
ever more general. Some systems, such as systems with closed
loop kinematics, can not be expressed in generalized coordinates
q, and thus have no mapping function (Betsch (2005)). Further-
more, learning the constraint manifold 0 = Φ(x) from data with
geometricmanifold learning algorithms (B. Chen et al. (2022) and
Levina and Bickel (2004)) could be a future research direction.
We therefore argue that adopting the constraint functionΦ(x) is
more general and requires less explicit knowledge injected in the
model.

2.2.4 Relationship between Lagrangian and Hamiltonian

Both Lagrangian and Hamiltonian mechanics ultimately
express the dynamics in terms of kinetic and potential energy.
The Hamiltonian expresses the total energy of the system
H(q,p) = T (q,p) + V (q) (Greydanus et al. (2019) and Toth
et al. (2020)). It is expressed in the position and the generalized
momenta (q,p), instead of generalized velocities. Using the
Legendre transformation it is possible to transform L into
H or back. We focus in our work on Lagrangian mechanics
because it is more general (Cranmer et al. (2020)) and observing
the momenta p is impossible from images. See also Botev
et al. (2021) for a short discussion on the differences.

2.3 Learning Lagrangian Dynamics from Images

2.3.1 Keypoints as state representations

We introduce the use of keypoints to learn Lagrangian dynamics
from images. KeyCLD is trained unsupervised on sequences of n
images {zi}, i ∈ {1, . . . , n} and a constant input vector u. See Fig.
2.3 for a schematic overview.
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Figure 2.3 Schematic overview of training KeyCLD. A sequence
of n images {zi}, i ∈ {1, . . . , n}, is processed by the keypoint
estimator model, returning heatmaps {si} representing spatial
probabilities of the keypoints. si consists of m heatmaps sik,
one for every keypoint xi

k, k ∈ {1, . . . ,m}. Spatial softmax is
used to extract the Cartesian coordinates of the keypoints, and
all keypoints are concatenated in the state vector xi. xi is trans-
formed back to a spatial representation s′i using Gaussian blobs.
This prior is encouraged on the keypoint estimator model by a
binary cross-entropy loss Le between si and s′i. The renderer
model reconstructs images z′i based on s′i, with reconstruction
loss Lr. The dynamics loss Ld is calculated on the sequence of
state vectors xi. Keypoint estimator model, renderer model and
the dynamics models (mass matrix, potential energy and input
matrix) are trained jointly with a weighted sum of the losses L =
Lr + Le + λLd.

All images zi in the sequence are processed by the keypoint es-
timator model, returning each a set of heatmaps si representing
the spatial probabilities of keypoint positions. si consists of m
heatmaps sik, one for every keypoint xi

k, k ∈ {1, . . . ,m}. The
keypoint estimatormodel is a fully convolutional neural network,
maintaining a spatial representation from input to output (see
Fig. 2.4 for the detailed architecture). This contrastswith amodel
ending in fully connected layers regressing to the coordinates
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directly, where the spatial representation is lost (Toth et al. (2020)
and Zhong and Leonard (2020)). Because a fully convolutional
model is equivariant to translation, it can better generalize to
unseen states that are translations of seen states. Another advan-
tage is the possibility of augmenting z with random transforma-
tions of the D4 dihedral group to increase robustness and data
efficiency. Because s can be transformed back with the inverse
transformation, this augmentation is confined to the keypoint
estimator model and has no effect on the dynamics.

To distill keypoint coordinates from the heatmaps, we define a
Cartesian coordinate system in the image (see for example Fig.
2.1). Based on this definition, every pixelp corresponds to a point
xp in the Cartesian space. The choice of the Cartesian coordinate
system is arbitrary but is equal to the space of the dynamics
ẍ(ẋ,x, t,u) and the constraint functionΦ(x) (see Section 2.2). We
use spatial softmax over all pixels p ∈ P to distill the coordinates
of keypoint xk from its probability heatmap:

xk =

∑
p∈P xpe

sk(p)∑
p∈P e

sk(p)
. (2.16)

Spatial softmax is differentiable, and the loss will backpropagate
through the whole heatmap since xk depends on all the pixels.
Cartesian coordinates xk of the different keypoints are concate-
nated in vector x which serves as the state representation of the
system. This compelling connection between image keypoints and
Cartesian coordinates forms the basis of this work. The keypoint
estimator model serves directly as state estimator to learn con-
strained Lagrangian dynamics from images.

Similar to Jakab et al. (2018), x acts as an information bottleneck,
through which only the Cartesian coordinates of the keypoints
flow to reconstruct the image with the renderer model. First, all
xk are transformed back to spatial representations s′k using un-
normalized Gaussian blobs, parameterized by a hyperparameter
σ.

s′k = exp

(
−‖xp − xk‖2

2σ2

)
. (2.17)

A binary cross-entropy loss Le is formulated over s and s′ to en-
courage this Gaussian prior. The renderermodel canmore easily
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interpret the state in this spatial representation, as it lies closer
to its semantic meaning of keypoints as semantic landmarks in
the reconstructed image. The renderer model learns a constant
feature tensor (inspired by Nguyen-Phuoc et al. (2019)), which
provides it with positional information. Since the model itself
is translation equivariant, it needs positional information to re-
construct background information or specific appearances that
depend on the positions of objects. See Fig. 2.4 for the detailed
architecture.

Figure 2.4 Visualization of the keypoint estimator (top) and ren-
derer (bottom) model architectures. The keypoint estimator
model and renderer model have similar architectures, utilizing
down- and upsampling and skip connections which help increas-
ing the receptive field Gu et al. 2019; Newell et al. 2016. The
renderer model learns a constant feature tensor that is concate-
nated with the input s′. The feature tensor provides positional
information since the fully-convolutional model is translation
equivariant.

Finally, a reconstruction loss is formulated over the
reconstructed images z′i and original images zi:

Lr =

n∑
i=1

‖z′i − zi‖2 . (2.18)

2.3.2 Dynamics loss function

The sequence {xi}, corresponding to the sequence of given im-
ages {zi}, and the constant input u is used to calculate the dy-
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namics loss. A fundamental aspect in learning dynamics from
images is that velocities can not be directly observed. A single
image only captures the position of a system, and contains no
information about its velocities2. Other work uses sequences of
images as input to amodel (Toth et al. (2020)) or a specific velocity
estimatormodel trained to estimate velocities froma sequence of
positions (Jaques et al. (2019)). Zhong and Leonard (2020) demon-
strate that for estimating velocities, finite differencing simply
works better.

We use a central first order finite difference estimation, and
project the estimated velocity on the constraints, so that the
constraints are not violated:

ẋi =
[
I −DΦ(xi)+DΦ(xi)

] xi+1 − xi−1

2h
, i = 2, . . . , n−1 , (2.19)

where (·)+ signifies theMoore-Penrose pseudo-inverse and h the
timestep. We can now integrate future timesteps x̂ starting from
initial values (xi, ẋi) using an ODE solver. The equations of mo-
tion (2.14) are solved starting fromall initial values in parallel, for
ν timesteps This maximizes the learning signal obtained to learn
the dynamics and leads to overlapping sequences of length ν:

{x̂i+1, . . . , x̂i+ν}, i = 2, . . . , n− ν . (2.20)

Thus, x̂i+j is obtained by integrating j timesteps forward in time,
starting from initial value xi, which was derived by the keypoint
estimator model. All {x̂i+j} in all sequences are compared with
their corresponding keypoint states {xi+j} in an L2 loss:

Ld =
n−ν∑
i=2

ν∑
j=1

∥∥xi+j − x̂i+j
∥∥2 . (2.21)

2.3.3 Total loss

The total loss is the weighted sum of Lr, Le and Ld, with a weigh-
ing hyperparameter λ: L = Lr + Le + λLd .

2. Neglecting side-effects such as motion blur, which are not very useful for
this purpose.
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2.3 Learning Lagrangian Dynamics from Images

To conclude, the keypoint estimator model, renderer model and
dynamics models (mass matrix, potential energy and input ma-
trix) are jointly trained end-to-end on sequences of images {zi}
and constant inputs u with stochastic gradient descent.

2.3.4 Rigid bodies as rigid sets of point masses

By interpreting a set of keypoints as a set of point masses, we can
represent any rigid body and its corresponding kinetic andpoten-
tial energy. Additional constraints are added for the pairwise dis-
tances between keypoints representing a single rigid body (Finzi
et al. (2020)). For 3D systems, at least four keypoints are required
to represent any rigid body (Laus and Selig (2020)). We focus in
our work on 2D systems in a plane parallel to the camera plane.
2D rigid bodies can be expressed with a set of 2 point masses,
which can further be reduced depending on the constraints and
connections betweenbodies (see 2.7.2 formore detail andproof).
In our framework, the keypoint model is free to choose the rela-
tive placement of keypoints on the different moving parts of the
dynamic system, enabling the choice of distinct landmarks that
also express the state accurately, e.g. the endpoint of a beam.

The interpretation of rigid bodies as sets of point masses allows
expressing the kinetic energy as the sum of the kinetic energies
of the point masses. Corresponding to equation (2.3), the mass
matrix for a 2D system is definedas adiagonalmatrixwithmasses
mk for every keypoint xk:

T (ẋ) =
1

2
ẋ>Mẋ (2.22)

=
1

2

[
ẋ1 . . . ẋn

]

m1 0 . . . 0 0
0 m1 . . . 0 0
...

... . . . ...
...

0 0 . . . mn 0
0 0 . . . 0 mn


ẋ1

...
ẋn

 .
(2.23)

To enforce positive values, themasses are parameterized by their
square root and squared.
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2.4 Experiments

We adapted the pendulum, cartpole and acrobot environments
from dm_control (Tunyasuvunakool et al. (2020) and Todorov et
al. (2012)) for our experiments. See 2.7.4 for details about the
environments, their constraint functions and the data generation
procedure. The exact same model architectures, hyperparame-
ters and control parameters were used for all environments (see
2.7.5 for more details). This further demonstrates the generality
and robustness of our method.

Since KeyCLD is trained directly on image observations, quanti-
tative metrics can only be expressed in the image domain. The
mean squared error (MSE) in the image domain is not a good
metric of long term prediction accuracy (Minderer et al. (2019)
and Zhong and Leonard (2020)). A model that trivially learns to
predict a static image, which is the average of the dataset, learns
no dynamics at all yet this model could report a lower MSE than
a model that did learn the dynamics but started drifting from the
groundtruth after some time. Therefore, we use the valid pre-
diction time (VPT) score (Botev et al. (2021) and Jin et al. (2020))
which measures how long the predicted images stay close to the
groundtruth images of a sequence:

VPT = argmini[MSE(z′i, zi) > ε] , (2.24)

where zi are the groundtruth images, z′i are the predicted images
and ε is the error threshold. ε is determined separately for the
different environments because it depends on the relative size in
pixels of moving parts. We define it as the MSE of the averaged
image of the respective validation dataset. Thus it is the lower
bound for a model that would simply predict a static image. We
present evaluationswith the following ablations and baselines:

KeyCLD The full framework as described in Sections 2.2 and
2.3.

KeyLD The constraint function is omitted.

KeyODE2 A second order neural ODE modelling the acceler-
ation is used instead of the Lagrangian prior. The
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keypoint estimator and renderermodel are identical
to KeyCLD.

Lag-caVAE The model presented by Zhong and Leonard (2020).
We adapted the model to the higher resolution and
color images.

Lag-VAE The model presented by Zhong and Leonard (2020).
We adapted the model to the higher resolution and
color images.

HGN Hamiltonian Generative Network presented by Toth
et al. (2020).

2.4.1 Future frame predictions

We generate predictions of 50 frames, given the first 3 frames
of the ground truth sequences to estimate the initial velocity ac-
cording equation (2.19). The VPT metric is calculated for the 50
sequences in the validation set (see 2.7.4 for details) and aver-
aged. See Tab. 2.2 for an overview of results. Lag-caVAE is unable
to model data with background (see also Fig. 2.5). Despite our
best efforts for implementation and training, Lag-VAE and HGN
perform very poorly. Themodels are not capable of handling the
relatively more challenging visual structure of dm_control envi-
ronments. Removing the constraint function (KeyLD) has a detri-
mental effect on the ability to make long-term predictions. Re-
sults are comparable to removing theLagrangianprior altogether
(KeyODE2). This suggests that modeling dynamics in Cartesian
coordinates coupled with keypoint representations is in itself a
very strong prior and that the effect of the Langrangian prior
without constraints is minimal. This is consistent with recent
findings by Gruver et al. (2021). However, using a Lagrangian
formulation allows leveraging a constraint function, since a gen-
eral neural ode model can not make use of a constraint function.
Thus, if a constraint function is available, the Lagrangian prior
becomes much more powerful.

One sequence of each experiment is visualized in the paper.
Please compare these qualitative results for the unactuated and
actuated pendulum environment (Fig. 2.5, 2.6), unactuated,
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Table 2.2 Valid prediction time (VPT) (higher is better, equation
(2.24)) in number of predicted frames (mean ± std) for the dif-
ferent models evaluated on the 50 sequences in the validation
set. Lag-caVAE and Lag-VAE are only reported on the pendulum
environment, since they are unable tomodelmore than onemov-
ing body without segmented images. HGN is only reported on
non-actuated systems, since it is incapable of modelling exter-
nal forces and torques. KeyCLD achieves the best results on all
benchmarks.

# actuators KeyCLD KeyLD KeyODE2 Lag-caVAE Lag-VAE HGN

Pe
nd

ul
um 0 (Fig. 2.5) 43.1±9.7 16.4±11.3 19.1±6.2 0.0±0.0 10.8±13.8 0.2±1.4

1 (Fig. 2.6) 39.3±9.8 14.9±7.9 12.0±4.1 0.0±0.1 8.0±10.2 -

Ca
rt
po

le 0 (Fig. 2.7) 39.9±7.4 29.8±11.2 29.5±9.5 - - 0.0±0.0
1 (Fig. 2.8) 38.4±8.7 28.0±9.7 24.4±7.9 - - -
2 (Fig. 2.9) 30.2±10.7 23.9±9.6 17.7±8.2 - - -

Ac
ro
bo

t 0 (Fig. 2.10) 47.0±6.0 40.0±7.9 34.3±9.5 - - 2.2±6.9
1 (Fig. 2.11) 46.8±4.6 29.5±6.3 33.0±7.4 - - -
2 (Fig. 2.12) 47.0±3.5 39.1±9.9 30.8±9.3 - - -

underactuated and fully actuated cartpole environment (Fig.
2.7, 2.8, 2.9) and unactuated, underactuated and fully actuated
acrobot environment (Fig. 2.10, 2.11, 2.12). Every third frame of
the sequence is shown.

2.4.2 Learned potential energymodels

Since the potential energy V is explicitly modelled, we can plot
values throughout sequences of the state space. A sequence of
images is processed by the learned keypoint estimator model,
and the states are then used to calculate the potential energy
with the learned potential energy model. Absolute values of the
potential energy are irrelevant, since the potential is relative,
but we gain insights by moving parts of the system separately.
See Fig. 2.13 for results for the pendulum, Figs. 2.14 and 2.15 for
the cartpole and Figs. 2.16 and 2.17 for the acrobot.
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Figure 2.13 Potential energy of the trained KeyCLDmodel of the
pendulum environment. The pendulummakes a full rotation. As
expected, the potential energy follows a smooth sinusoidal path
throughout this sequence. The maximum value is reached when
the pendulum is upright, and the minimum value is reached
when the pendulum is down.

2.4.3 Learned input matrix models

Learning the input matrix g(x) is crucial for learning dynamics
models with external inputs u. We can visualize the vector basis
that is represented by the input matrix, by drawing the vectors
originating on their respective keypoints. See Fig. 2.18, 2.19
and 2.20 for the input matrices that are learned with our model.
Each input corresponds to a vector base, visualized in different
colors. The vectors multiplied by their respective input, can be
interpreted as forces acting on the keypoints. These qualitative
results allow further insight in our method.

2.4.4 Energy shaping control

A major argument in favor of expressing dynamics in terms of a
mass matrix and potential energy is the straightforward control
design via passivity based control and energy shaping (Ortega
et al. (2001)). Our framework allows design of a simple energy
shaping controller, see 2.7.3 for details and derivation. Fig. 2.21
shows results of successful swing-up of the pendulum, cartpole
and acrobot system. The same control parameters kp = 5.0 and
kd = 2.0 are used for all systems, demonstrating the generality of
the control method.
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Figure 2.14 Potential energy of the trained KeyCLDmodel of the
cartpole environment. The position of the cart is fixed, and the
pole makes a full rotation. As expected, the potential energy
follows a smooth sinusoidal path throughout this sequence.

0.8

1.0

1.2

1.4

V

0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 2.15 Potential energy of the trained KeyCLDmodel of the
cartpole environment. The pole is fixed and the cart moves from
left to right. As expected, the change in potential energy in this
sequence is very low (compare to Fig. 2.14 with the same axis). A
horizontal movement has no impact on the gravity potential.

2.5 Conclusion and Future Work

We introduce the use of keypoints to learn Lagrangian dynamics
from images. Learned keypoint representations derived from
images are directly used as positional state vector for learning
constrained Lagrangian dynamics. The pendulum, cartpole and
acrobot systems of dm_control are adapted as benchmarks. Pre-
vious works in literature on learning Lagrangian or Hamiltonian
dynamics from images were benchmarked on very simple ren-
derings of flat sprites on blank backgrounds, whereas dm_con-
trol is rendered with lighting effects, shadows, reflections and
backgrounds. Also the recently proposed benchmarks by Botev
et al. (2021) have minimalistic visuals and do not cover a control
aspect or external forces. We believe that working towards more
realistic datasets is crucial for applying Lagrangianmodels in the
real world.

The challenge of learning Lagrangian dynamics from more
complex images should not be underestimated. Despite our
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Figure 2.16 Potential energy of the trained KeyCLD model of
the acrobot environment. The first link makes a full rotation,
the second link is fixed relative to the first link. As expected,
the potential energy follows a smooth sinusoidal path throughout
this sequence.
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Figure 2.17 Potential energy of the trained KeyCLD model of
the acrobot environment. The first link is fixed and the second
link makes a full rotation. Again, the potential energy follows a
smooth sinusoidal path throughout this sequence. Please com-
pare with Fig. 2.16, where both links are moving. Here the po-
tential energy changes less, because the first link is not moving.

best efforts in implementing and training Lag-caVAE, Lag-
VAE (Zhong and Leonard (2020)) and HGN (Toth et al. (2020)),
they perform very poorly on our dm_control quantitative
benchmark (see Tab. 2.2). KeyCLD is capable of making long-
term predictions and learning accurate energy models, suitable
for simple energy shaping control. KeyCLD is compared to a
Lagrangian dynamics model without constraints (KeyLD) and
a general second order neural ODE (KeyODE2). Both yield
worse results on the benchmark, with comparable results
(see Tab. 2.2). This suggests that when no constraint prior is
available, the benefit of a Lagrangian prior is limited. When
the constraint function is known, the constrained Lagrangian
formulation is very beneficial for long-term predictions.

The main limitations of our work are that we only consider 2D
systems,where theplaneof the system is parallelwith the camera
plane. Secondly, we do not model energy dissipation, all systems
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have perfect energy conservation. Finally, the constraint func-
tion is given and we benchmark on relatively simple dynamical
systems with few degrees of freedom.

Elevation to 3D, e.g. setups with multiple cameras, is an inter-
esting future direction. Modelling contacts by using inequality
constraints could also be a useful addition. And modelling en-
ergy dissipation is necessary for real-world applications. Sev-
eral recent papers have proposed methods to incorporate en-
ergy dissipation in the Lagrangian dynamics models (Zhong et
al. (2020) and Greydanus and Sosanya (2022)). However, Gruver
et al. (2021) argue that modelling the acceleration directly with
a second order differential equation and expressing the system
in Cartesian coordinates, is a better approach. Further research
into both approaches would clarify the benefit of Lagrangian and
Hamiltonian priors on real-world applications. Applications on
more complex scenarios with more degrees of freedom are also
interesting for future work.

2.6 Broader impact

A tenacious divide exists between control engineering
researchers and computer science researchers working on
control. Where thefirstwoulduse knownequations ofmotion for
a specific class of systems and investigate system identification,
the latter would strive for the most general method with no
prior knowledge. We believe this is a spectrum worth exploring,
and as such use strong physics priors as Lagrangian mechanics,
but still model e.g. the input matrix and the potential energy
with arbitrary neural networks. The broad field of model-based
reinforcement learning could benefit from decades of theory
and practice in classic control theory and system identification.
We hope this work could help bridge both worlds.

Using images as input is, in a broad sense, very powerful. Since
camera sensors are consistently becoming cheaper and more
powerful due to advancements in technology and scaling oppor-
tunities, we can leverage these rich information sources for a
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deeper understanding of the world our intelligent agents are act-
ing in. Image sensors can replace and enhance multiple other
sensor modalities, at a lower cost.

To conclude, this work demonstrates the ability to efficiently
model and control dynamical systems that are captured by
cameras, with no supervision and minimal prior knowledge. We
want to stress that we have shown it is possible to learn both the
Lagrangian dynamics and state estimator model from images in
one end-to-end process. The complex interplay between both,
often makes them the most labour intensive parts in system
identification. We believe this is a gateway step in achieving
reliable end-to-end learned control from pixels.

2.7 Appendix

2.7.1 Implementation of constrained Euler-Lagrange
equations in JAX

It could seem a daunting task to implement the derivation of
the constrained Euler-Lagrange equations (2.14) in an autograd
library. As an example, we provide an implementation in
JAX (Bradbury et al. (2018)).
1 import jax
2 import jax.numpy as jnp
3
4
5 def constraint_fn(x):
6 # function that returns a vector with constraint values
7 c = jnp.array([
8 ...,
9 ])
10 return c
11
12
13 def mass_matrix(params, x):
14 # function that returns the mass matrix
15 ...
16 return m
17
18
19 def potential_energy(params, x):
20 # function that returns the potential energy
21 ...
22 return V
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23
24
25 def input_matrix(params, x):
26 # function that returns the input matrix
27 ...
28 return g
29
30
31 def euler_lagrange(params, x, x_t, action):
32 m_inv = jnp.linalg.pinv(mass_matrix(params, x))
33 f = - jax.grad(potential_energy, 1)(params, x) + input_matrix(params, x)

↪→ @ action
34
35 Dphi = jax.jacobian(constraint_fn)(x)
36 DDphi = jax.jacobian(jax.jacobian(constraint_fn))(x)
37
38 # Lagrange multiplicators:
39 l = jnp.linalg.pinv(Dphi @ m_inv @ Dphi.T) @ (Dphi @ m_inv @ f +

↪→ DDphi @ x_t @ x_t)
40 x_tt = m_inv @ (f - Dphi.T @ l)
41
42 return x_tt

2.7.2 Rigid bodies as sets of point masses

Figure2.22 Any2D rigid bodywithmassm and rotational inertia
I is equivalent to a set of two point masses x1 and x2 withmasses
m1 and m2. The kinetic energy of the rigid body, expressed in a
translational part and a rotational part, is equal to the sum of the
kinetic energies of the point masses.

Theposition of a rigid body in 2D is fully describedby theposition
of its center of mass xc and orientation θ. Potential energy only
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depends on the position, thus if wewant to describe the potential
energy with an equivalent rigid set of point masses, two points
are sufficient to fully determine xc and θ. For the kinetic energy,
we provide the following Theorem and proof:

Theorem 2. For any 2D rigid body, described by its center of mass c,
massm and rotational inertia I, there exists an equivalent rigid set of
two point masses x1 and x2 with massesm1 andm2.

Proof. To find conditions such that the kinetic energy expressed
in two point masses should be equal to the rigid body represen-
tation, we start by expressing general 3D-movement:

xi = xc + xi/c, i ∈ {1, 2} . (2.25)

Where the vector xc are the coordinates of the center of mass
and the vector xi/c is the position of the point mass relative to the
center of mass. Since this relative position xi/c has fixed length,
only a rotation is possible and hence the equation of the velocity
is:

ẋi = ẋc + ω × xi/c, i ∈ {1, 2} , (2.26)

whereω is the rotational velocity of the body. Substituting this in
the kinetic energy of the point masses, we get:

T =
1

2

2∑
i=1

mi‖ẋc + ω × xi/c‖2 (2.27)

=
1

2

2∑
i=1

mi

(
‖ẋc‖2 + ‖ω × xi/c‖2 + 2xi/c · (ẋc × ω)

)
. (2.28)

Where we calculated the square and used the circular shift prop-
erty of the triple product on the last term.

For movement in the 2D-plane (i.e., ω = ~ezωz and xi = ~exxi,x +
~eyxi,y), this becomes:

T =
1

2

2∑
i=1

mi

(
‖ẋc‖2 + ‖xi/c‖2ω2

z + 2xi/c · (ẋc × ω)
)

(2.29)

=
1

2
(m1 +m2)‖ẋc‖2 +

1

2
(m1‖x1/c‖2 +m2‖x2/c‖2)ω2

z

+ (m1x1/c +m2x2/c) · (ẋc × ω) . (2.30)
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Matching the kinetic energy of the 2 point masses (equation
(2.29)) with that of the rigid body representation (left hand side
of Fig. 2.22), we get following conditions:

m = m1 +m2 ,

I = m1‖x1/c‖2 +m2‖x2/c‖2 ,
0 = m1x1/c +m2x2/c .

(2.31)

Since the last equation is a vector equation, this gives us four
equations in six unknowns (m1,m2,x1,x,x1,y,x2,x,x2,y), which
leaves us the freedom to choose two.

It follows from the third condition of (2.31) that points x1, x2 and
xc should be collinear. To conclude, we can freely choose the
positions of the pointmasses (as long as xc is on the line between
them), and will be able to model the rigid body as a set of two
pointmasses. In practice, KeyCLDwill freely choose the keypoint
positions to be able to model the dynamics. Depending on the
constraints in the system, it is possible to further reduce thenum-
ber of necessary keypoints. See Appendix 2.7.4 for examples.

2.7.3 Energy shaping control

Recentworks of Zhong et al. (2020) and Zhong andLeonard (2020)
use energy shaping in generalized coordinates. In Cartesian co-
ordinates, energy shaping can still be used. This is easily seen
from the fact that for the holonomic constraints Φ(x) ≡ 0, we
have the derivativeDΦ(x)ẋ = 0, whichmeans that the constraint
forces in equation (2.14) are perpendicular to the path and hence
do no work nor influence the energy (Lanczos (2020)).

Energy shaping control makes sure that the controlled system
behaves according to a potential energy Vd(x) instead of V (x):

u = (g>g)−1g> (∇xV −∇xVd)− ypassive , (2.32)

where ypassive can be any passive output, the easiest choice being
ypassive = kdg

>ẋ, where kd is a tuneable control parameter. The
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proposed potential energy Vd should be such that:

x∗ = argminVd(x) , (2.33)
0 = g⊥ (∇xV −∇xVd) , (2.34)

Where g⊥ is the left-annihilator of g, meaning that g⊥g = 0.
For fully actuated systems, the first condition of equation (2.33)
is always met and the easiest choice is:

Vd(x) = (x− x∗)>kp(x− x∗) , (2.35)

where kp is a tuneable control parameter. The desired equilib-
rium position x∗ is obtained by processing an image of the de-
sired position with the keypoint estimator model. Finally, the
passivity-based controller that is used is:

u = (g>g)−1g> [∇xV − kp(x− x∗)]− kdg
>ẋ . (2.36)

Changing the behavior of the kinetic energy is also
possible (Gomez-Estern et al. (2001)), but is left for future
work. Many model-based reinforcement learning algorithms
require the learning of a full neural network as controller. Whilst
in this work, due to knowledge of the potential energy, we only
need to tune two parameters kp and kd.

2.7.4 Details about the dm_control environments and data
generation

We adapted the pendulum, cartpole and acrobot environments
from dm_control (Tunyasuvunakool et al. (2020)) implemented
in MuJoCo (Todorov et al. (2012)). Both are released under the
Apache-2.0 license. Following changes were made to the envi-
ronments to adapt them to our use-case:

Pendulum

The camera was repositioned so that it is in a parallel plane to
the system. Friction was removed. Torque limits of the motor
are increased.
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Cartpole

The camera was moved further away from the system to enable
a wider view, the two rails are made longer and the floor lowered
so that they are not cut-off with the wider view. All friction is
removed. The pole is made twice as thick, the color of the cart is
changed. Torque limits are increased and actuation is added to
the cart to make full actuation possible.

Acrobot

The camera and system are moved a little bit upwards. The two
poles aremade twice as thick, andone is changed in color. Torque
limits are increased and actuation is added to the upper part to
make full actuation possible.

Data generation

For every environment, 500 runs of 50 timesteps are generated
with a 10% validation split. The initial state for every sequence
is at a random position with small random velocity. The control
inputs u are constant throughout a sequence, and uniform ran-
domly chosen between the force and torque limits of the input.
We set u = 0 for 20% of the sequences. We found this helps the
model to learn the dynamics better, discouraging confusion of
the energy models with external actions.

The constraint function for each of the environments are given
in Fig. 2.23. As explained in 2.7.2, every rigid body needs to
be represented by two keypoints. But due to the constraints it
is possible to omit certain keypoints, because they do not move
or coincide with other keypoints. As experimentally validated,
we can thus model all three systems with a lower number of
keypoints, where the number of keypoints equals the number of
bodies.
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Pendulum

One keypoint is used to model the pendulum. The second key-
point of this rigid body can be omitted because it can be assumed
to be at the origin. Due to the constraint function, this point will
provide no kinetic energy since it will not move. Since the other
keypoints position and mass is freely chosen, any pendulum can
bemodelled. The constraint function expresses that the distance
l1 from the origin tox1 is fixed. The value of l1 in the implementa-
tion is irrelevant because it vanishes when taking the Jacobian.

Cartpole

Two keypoints are used to model the cartpole. The constraint
function expresses that x1 does notmove in the vertical direction
and the distance l1 between x1 and x2 is constant. Again, the
values of l1 and l2 in the implementation are irrelevant.

Acrobot

Two keypoints are used to model the acrobot. The constraint
function expresses that lengths l1 and l2 are constant through
time. Again, the values are irrelevant in the implementation.

2.7.5 Training hyperparameters and details

All models were trained on one NVIDIA RTX 2080 Ti GPU.

KeyCLD, KeyLD and KeyODE2

Weuse theAdamoptimizer (KingmaandBa (2015)), implemented
in Optax (Hessel et al. (2020)) with a learning rate of 3 × 10−4.
We use the exact same hyperparameters for all the environments
and did not tune them individually. Dynamics loss weight λ = 1,
σ = 0.1 for the Gaussian blobs in s′. The hidden layers in the
keypoint estimator and renderer model have at the first block
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Table 2.3 Number of parameters of the potential energy model.

Pendulum Cartpole Acrobot

Dense_0 96 160 160
Dense_1 1056 1056 1056
Dense_2 33 33 33

Total 1185 1249 1249

Table 2.4 Number of parameters of the input matrix model.

Pendulum Cartpole Acrobot

Dense_0 96 160 160
Dense_1 1056 1056 1056
Dense_2 66 264 264

Total 1218 1480 1480

32 features, this increases to respectively 64 and 128 after every
maxpool operation. All convolutions have kernel size 3 × 3, and
maxpool operations scale downwith factor 2with a kernel size of
2× 2. See Tabs. 2.5 and 2.6 for the number of parameters.

The potential energy is modelled with an MLP with two hid-
den layers with 32 neurons and celu activation functions (Barron
(2017)). The weights are initialized with a normal distribution
with standard deviation 0.01. See Tab. 2.3 for the number of
parameters. Likewise, the input matrix is modelled with an MLP
similar to the potential energy. The outputs of this MLP are
reshaped in the shape of the input matrix. See Tab. 2.4 for the
number of parameters.

TheKeyODE2dynamicsmodel is anMLPwith threehidden layers
with each 64 neurons. We chose a higher number of layers and
neurons, to allow this model more expressivity compared to the
potential energy and input matrix models of KeyCLD.
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Table2.5 Numberof parameters of thekeypoint encodermodel.

Pendulum Cartpole Acrobot

Block_0/Conv_0 896 896 896
Block_0/GroupNorm_0 64 64 64
Block_1/Conv_0 18496 18496 18496
Block_1/GroupNorm_0 128 128 128
Block_2/Conv_0 73856 73856 73856
Block_2/GroupNorm_0 256 256 256
Block_3/Conv_0 110656 110656 110656
Block_3/GroupNorm_0 128 128 128
Block_4/Conv_0 27680 27680 27680
Block_4/GroupNorm_0 64 64 64
Conv_0 289 578 578

Total 232513 232802 232802

Table 2.6 Number of parameters of the renderer model.

Pendulum Cartpole Acrobot

Seed Tensor 126976 126976 122880
Block_0/Conv_0 9248 9248 9248
Block_0/GroupNorm_0 64 64 64
Block_1/Conv_0 18496 18496 18496
Block_1/GroupNorm_0 128 128 128
Block_2/Conv_0 73856 73856 73856
Block_2/GroupNorm_0 256 256 256
Block_3/Conv_0 110656 110656 110656
Block_3/GroupNorm_0 128 128 128
Block_4/Conv_0 27680 27680 27680
Block_4/GroupNorm_0 64 64 64
Conv_0 867 867 867

Total 368419 364323 364323
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Lag-caVAE, Lag-VAE and HGN

For theLag-caVAEandLag-VAEbaselines, the official public code-
base was used (Zhong and Leonard (2020)). We adapted the im-
plementation to work with the higher input resolution of 64 by 64
(instead of 32 by 32), and 3 color channels (instead of 1).

For the HGN baseline, we used the implementation that was also
released by Zhong and Leonard (2020). The architecture was
adapted to work with the higher input resolution of 64 by 64 (in-
stead of 32 by 32) by adding an extra upscale layer in the decoder,
and a maxpool layer and one extra convolutional layer in the
encoder.

2.7.6 Failure cases

A possible failure case is that the model learns a faulty keypoint
representation that does not correspond to the given constraint
function. This results in a failed model, and the training is stuck
in this local minima. The encoder model will keep focussing
on this erronous representation and is unable to switch to the
correct keypoints. Figure 2.24 shows an example of this failure
case. We observed this failure in a minority of the experiments.
This can be mitigated by retraining the model.

2.7.7 Ablating Le

A binary cross-entropy loss Le is formulated over s and s′ to
encourage the Gaussian prior. When Le is omitted, the model
can get stuck in a local minima where the encoder does not learn
to predict keypoints, but rather larger regions or static values.
Image 2.25 shows an example of this failure case.
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Figure 2.18 Visualization of the input matrix of the trained Key-
CLD model of the pendulum environment. The input of this
environment is a torque acting on the pendulum. In the KeyCLD
framework this is correctly modelled with a force acting perpen-
dicular on the pendulum.

Figure 2.19 Visualization of the input matrix of the trained Key-
CLD model of the cartpole environment. This environment has
two inputs, a horizontal force acting on the cart, and a torque
acting on the pole. The horizontal force corresponds to the green
vectors. The first vector acting on the cart keypoint stays con-
stant, and the second vector is negligibly small, since the hori-
zontal force does not act on the pole. The torque corresponds to
the red vectors, it is modelled with forces acting on the pole in
opposite directions, such that the residual force can be zero.

Figure 2.20 Visualization of the input matrix of the trained Key-
CLD model of the acrobot environment. This environment has
two inputs, two torques acting on each pole. The torques are
modelled with opposite forces on each end of the poles, such that
the residual force can be zero.
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Figure 2.23 From left to right the pendulum, cartpole and ac-
robot dm_control environments. The respective constraint func-
tions are given below each schematic.
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3
Variational Inference of SDEs
Driven by Fractional Noise

The preceding chapter considers physics priors in a determin-
istic manner. This chapter takes a step further towards learn-
ing stochastic dynamical models from video. Concretely, we use
variational inference (VI) to learn the parameters of continuous-
time models, i.e., stochastic differential equations (SDEs). Basic
notions on VI, stochastic dynamics and stochastic calculus are
provided in Secs. 1.4 to 1.6. Additionally, this chapter makes
use of incomplete and complete Gamma functions, which are
introduced in more detail in Sec. 1.7. This chapter addresses
the second goal of this dissertation, as outlined in Sec. 1.8 and
is partially based on Daems, Opper, et al. (2024).

We present a novel variational framework for performing
inference in (neural) stochastic differential equations (SDEs)
driven by Markov-approximate fractional Brownian motion
(fBM). SDEs offer a versatile tool for modeling real-world
continuous-time dynamic systems with inherent noise and
randomness. Combining SDEs with the powerful inference
capabilities of variational methods, enables the learning
of representative distributions through stochastic gradient
descent. However, conventional SDEs typically assume the
underlying noise to follow a Brownian motion (BM), which
hinders their ability to capture long-term dependencies. In
contrast, fractional Brownian motion (fBM) extends BM to
encompass non-Markovian dynamics, but existing methods for
inferring fBMparameters are either computationally demanding
or statistically inefficient. By building upon the Markov
approximation of fBM, we derive the evidence lower bound



Chapter 3

essential for efficient variational inference of posterior path
measures, drawing from the well-established field of stochastic
analysis. Additionally, we provide a closed-form expression for
optimal approximation coefficients and propose to use neural
networks to learn the drift, diffusion and control terms within
our variational posterior, leading to the variational training of
neural-SDEs. In this framework, we also optimize the Hurst
index, governing the nature of our fractional noise. Beyond
validation on synthetic data, we contribute a novel architecture
for variational latent video prediction,—an approach that, to the
best of our knowledge, enables the first variational neural-SDE
application to video perception.

3.1 Introduction

Our surroundings constantly evolve over time, influenced by sev-
eral dynamic factors, manifesting in various forms, from the
weather patterns and the ebb & flow of financial markets to the
movements of objects (Yu et al. (2023) and Rempe et al. (2021))
& observers, and the subtle deformations that reshape our en-
vironments (Gojcic et al. (2021)). Stochastic differential equa-
tions (SDEs) provide a natural way to capture the randomness
and continuous-time dynamics inherent in these real-world pro-
cesses. To extract meaningful information about the underly-
ing system, i.e., to infer the model parameters and to accurately
predict the unobserved paths, variational inference (VI) (Bishop
and Nasrabadi (2006)) is used as an efficient means, computing
the posterior probability measure over paths (Opper (2019), Li et
al. (2020), and Ryder et al. (2018))1.

The traditional application of SDEs assumes that the underlying
noise processes are generated by standard Brownian motion
(BM) with independent increments. Unfortunately, for many
practical scenarios, BM falls short of capturing the full
complexity and richness of the observed real data, which often

1. KL divergence between two SDEs over a finite time horizon has been
well-explored in the control literature (Theodorou (2015) and Kappen and Ruiz
(2016)).
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contains long-range dependencies, rare events, and intricate
temporal structures that cannot be faithfully represented by a
Markovian process. The non-Markovian fractional Brownian
motion (fBM) (Mandelbrot and Van Ness (1968)) extends BM
to stationary increments with a more complex dependence
structure, i.e., long-range dependence vs. roughness/regularity
controlled by its Hurst index (Gatheral et al. (2018)). Yet, despite
its desirable properties, the computational challenges and
intractability of analytically working with fBMs pose significant
challenges for inference.

In this chapter, we begin by providing a tractable variational
inference framework for SDEs driven by fractional Brownianmo-
tion (Types I & II). To this end, we benefit from the relatively
under-explored Markov representation of fBM and path-wise ap-
proximate fBM through a linear combination of a finite num-
ber of Ornstein-Uhlenbeck (OU) processes driven by a common
noise (Carmona and Coutin (1998a, 1998b) and Harms and Ste-
fanovits (2019)). We further introduce a differentiable method to
optimise for the associated coefficients and conjecture (as well as
empirically validate) that this strong approximation enjoys super-
polynomial convergence rates, allowing us to use a handful of
processes even in complex problems.

SuchMarkov-isation also allows us to inherit the well-established
tools of traditional SDEs including Girsanov’s change of measure
theorem (Øksendal (2003)), which we use to derive andmaximise
the corresponding evidence lower bound (ELBO) to yield posterior
path measures as well as maximum likelihood estimates as illus-
trated in Fig. 3.1. We then use our framework in conjunctionwith
neural networks to deviseVI for neural-SDEs (Liu et al. (2019) and
Li et al. (2020)) driven by the said fractional diffusion. We deploy
this model along with a novel neural architecture for the task of
enhanced video prediction. To the best of our knowledge, this is
the first time either fractional or variational neural-SDEs are used
to model videos. Our contributions are:

• We make accessible the relatively uncharted Markovian em-
bedding of the fBM and its strong approximation, to the ma-
chine learning community. This allows us to employ the tra-
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Figure 3.1 We leverage the Markov approximation, where the
non-Markovian fractional Brownian motion with Hurst index H
is approximated by a linear combination of a finite number of
Markov processes (Y1(t), . . . , YK(t)), and propose a variational
inference framework in which the posterior is steered by a con-
trol term u(t). Note the long-term memory behaviour of the
processes, where individual Yk(t)s have varying transient effects,
from Y1(t) having the longest memory to Y7(t) the shortest, and
tend to forget the action of u(t) after a certain time frame.

ditional machinery of SDEs in working with non-Markovian
systems.

• We show how to balance the contribution of Markov processes
by optimising for the combination coefficients in closed form.
We further estimate the (time-dependent) Hurst index from
data.

• We derive the evidence lower bound for SDEs driven by approx-
imate fBM of both Types I and II.

• We model the drift, diffusion and control terms in our frame-
work by neural networks, and propose a novel architecture for
video prediction.

3.2 Related Work

Fractional noises and neural-SDEs. fBM (Mandelbrot and
Van Ness (1968)) was originally used for the simulation of rough
volatility in finance (Gatheral et al. (2018)). Using the Lemarié-
Meyer wavelet representation, Allouche et al. (2022) provided a
large probability bound on the deep-feedforward RELU network
approximation of fBM, where up to log terms, a uniform error
of O(N−H) is achievable with log(N) hidden layers and O(N)
parameters. Tong et al. (2022) approximated the fBM (only Type
II) with sparse Gaussian processes. Unfortunately, they are
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limited to Euler-integration and to the case of H > 1/3. Their
model was also not applied to videos. Recently, Luxuan Yang
et al. (2023) applied Levy driven neural-SDEs to times series
prediction and Hayashi and Nakagawa (2022) considered neural-
SDEs driven by fractional noise. Neither of those introduce
a variational framework. Both Liao et al. (2019) and Morrill
et al. (2021) worked with rough path theory to model long time
series via rough neural-SDEs. To the best of our knowledge, we
are the firsts to devise a VI framework for neural-SDEs driven by
a path-wise (strong) approximation of fBM.

SDEs and visual understanding. Apart from the recent video
diffusionmodels (Luo et al. (2023), R. Yang et al. (2022), and Ho et
al. (2022)), SDEs for spatiotemporal visual generation is relatively
unexplored. S. Park et al. (2021) and Ali et al. (2023) used
neural-ODEs to generate and manipulate videos while Rempe
et al. (2020) used neural-ODEs for temporal 3D point cloud
modeling. SDENet (Kong et al. (2020)) and MDSDE-Net (Zhang
et al. (2023)) learned drift and diffusion networks for uncertainty
estimation of images using out-of-distribution data. Tong
et al. (2022) used approximate-fBMs in score-based diffusion
modeling for image generation. Gordon and Parde (2021) briefly
evaluated different neural temporalmodels for video generation.
While Babaeizadeh et al. (2018) used VI for video prediction,
they did not employ SDEs. To the best of our knowledge, we are
the firsts to use neural-SDEs in a variational framework for video
understanding.

We first tailor and make accessible the fractional Brownian mo-
tion (fBM) and its relatively less exploredMarkov approximations
for the learning community. We then describe the SDEs driven by
fBM and its approximation before delving into the inference.

3.2.1 Fractional Brownianmotion (fBM) & Its Markov
Approximation

Definition 1 (Fractional Brownian motion (Type I)). fBM (Type I)
is a self-similar, non-Markovian, non-martingale, zero-mean Gaus-
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sian process
(
B

(I)
H (t)

)
t∈[0,T ]

for T > 0 with a covariance:

Cov
(
B

(I)
H (t1), B

(I)
H (t2)

)
=
V

(I)
H

2

(
|t1|2H+|t2|2H−|t1 − t2|2H

)
, (3.1)

with scaling constant (Lim and Sithi (1995)):

V
(I)
H = Var

(
B

(I)
H (1)

)
=

−Γ(2− 2H) cos(πH)

(2H − 1)πH
(3.2)

=
Γ(2− 2H)sinc(H − 1/2)

2H
, (3.3)

where 0 < H < 1 is the Hurst index, Γ is the Gamma function and
sinc(x) = sin(πx)/(πx) is the normalized sine cardinal.

Definition 2 (Fractional Brownian motion (Type II)). fBM (Type
II) is a self-similar, non-Markovian, non-martingale, zero-mean
Gaussian process

(
B

(II)
H (t)

)
t∈[0,T ]

for T > 0 with a covariance:

Cov
(
B

(II)
H (t1), B

(II)
H (t2)

)
= V

(II)
H 2H

∫ min(t1,t2)

0
((t1 − u)(t2 − u))H−1/2 du (3.4)

= V
(II)
H

2H(t1t2)
H−1/2min(t1, t2)

H + 1/2

· 2F1

(
1/2−H, 1,H + 3/2,

min(t1, t2)

max(t1, t2)

)
, (3.5)

with scaling constant:

V
(II)
H = Var

(
B

(II)
H (1)

)
=

1

2HΓ2(H + 1/2)
, (3.6)

where 0 < H < 1 is the Hurst index, Γ is the Gamma function and
2F1 is the hypergeometric function.

fBM (Type I & II) recover Brownian motion (BM) for H = 1/2
(regular diffusion) and generalize it for other choices. The incre-
ments are (i) positively correlated for H > 1/2 (super-diffusion)
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where the tail behaviour is infinitely heavier than that of BM, and
(ii) negatively correlated for H < 1/2 (sub-diffusion). The incre-
ments ofType I are stationary, however, theType IImodel implies
nonstationary increments of which the marginal distributions
are dependent on the time relative to the start of the observed
sample, i.e., all realizations would have to be found very close to
the unconditionalmean (i.e., the origin) (Limand Sithi (1995) and
Davidson and Hashimzade (2009)).

Definition 3 (Integral representations of fBM). B(I,II)
H admit the

following integral forms due to the Mandelbrot van-Ness and Weyl
representations, respectively (Mandelbrot and Van Ness (1968)):

B
(I)
H (t) =

1

Γ(H + 1
2)

(∫ t

−∞
(t− s)H− 1

2 dW (s)

−
∫ 0

−∞
(−s)H− 1

2 dW (s)

)
, (3.7)

B
(II)
H (t) =

1

Γ(H + 1
2)

∫ t

0
(t− s)H− 1

2 dW (s) . (3.8)

One can perceive Type I as a generalization of Type II, in the
sense that the integral starts at −∞ instead of at 0, and where
the addition of the second integral ensures B(I)

H (0) = 0. The
stationarity of the increments of Type I is reflected in the fact
that the integral starts at −∞. The increments of Type II are
nonstationary, as the integral starts at 0, i.e., the integrands are
dependent on the time relative to the origin.

Remark 1 (Stationarity of the increments of fBM). The increments
of the fBM processes are stationary for Type I and nonstationary for
Type II:

B
(I)
H (t+∆t)−B

(I)
H (t)

d
= B

(I)
H (∆t) , (3.9)

B
(II)
H (t+∆t)−B

(II)
H (t)

d
6= B

(II)
H (∆t) , (3.10)

where d
= and

d
6= denote (in)equality in distribution. This is the main

difference between Type I and Type II.
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Remark 2 (Self-similarity of fBM). One can show, for both Type I &
II, that the process B(I,II)

H is self-similar:

B
(I,II)
H (at)

d
= aHB

(I,II)
H (t) , a > 0, (3.11)

where d
= denotes equality in distribution. This means that the process

has the same statistical properties at all time scales. Likewise, the
covariance function is scaled by a2H :

Cov
(
B

(I,II)
H (at1), B

(I,II)
H (at2)

)
= a2HCov

(
B

(I,II)
H (t1), B

(I,II)
H (t2)

)
. (3.12)

Remark 3. The scaling constants V (I,II)
H above are defined as the

variance at time t = 1. Note that this variance changes with the choice
ofH. An alternative approach is to define the covariance at time t = 1
fixed as 1 for all Hurst values H. This is done by scaling the process
appropriately:

Cov
(
B

(I,II)
H (t1), B

(I,II)
H (t2)

)
→

Cov
(
B

(I,II)
H (t1), B

(I,II)
H (t2)

)
V

(I,II)
H

, (3.13)

B
(I,II)
H (t) →

B
(I,II)
H (t)√
V

(I,II)
H

. (3.14)

All results in this work can thus be adapted to this alternative defini-
tion.

Proposition 1 (Markov representation of fBM (Harms and Ste-
fanovits (2019))). The long memory processes B(I,II)

H (t) can be rep-
resented by an infinite linear combination of Markov processes Yγ(t)
andUγ(t), all driven by the sameWiener noise, but with different time
scales, defined by speed of mean reversion γ. For both types we have
representations of the form:

BH(t) =


∫ ∞

0
(Yγ(t)− Yγ(0))µ(γ) dγ, H <

1

2
,∫ ∞

0
(Uγ(t)− Uγ(0))ν(γ) dγ, H >

1

2
,

(3.15)
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where

µ(γ) =
γ−(H+ 1

2
)

Γ(H + 1
2)Γ(

1
2 −H)

, (3.16)

ν(γ) =
γ−(H− 1

2
)

Γ(H + 1
2)Γ(

3
2 −H)

. (3.17)

Note, these non–negative densities are not normalisable. To simplify
notation, we will drop explicit dependency on the types (I, II) in what
follows. For each γ ≥ 0, and for both types I and II, the processes
Yγ(t) and Uγ(t) are defined as the system of stochastic differential
equations (SDEs):

dYγ(t) = −γYγ(t) dt+ dW (t) , (3.18)
dUγ(t) = (−γUγ(t) + Yγ(t)) dt . (3.19)

Type I and Type II differ in the initial conditions for Yγ(0) and Uγ(0):

Y (I)
γ (0) =

∫ 0

−∞
eγs dW (s) and Y (II)

γ (0) = 0 ,

U (I)
γ (0) = −

∫ 0

−∞
seγs dW (s) and U (II)

γ (0) = 0 .

Sketch of the proof. TheMarkov processes (Yγ(t), Uγ(t)) are solved
by:

Yγ(t) = Yγ(0)e
−γt +

∫ t

0
e−γ(t−s) dW (s) , (3.20)

Uγ(t) = Uγ(0)e
−γt + Yγ(0)te

−γt

+

∫ t

0
(t− s)e−γ(t−s) dW (s) . (3.21)

For H < 1/2, the term τH−1/2/Γ(H + 1/2) in Eqs. (3.7) and (3.8)
is the Laplace transform of µ:

L(µ)(τ) =
∫ ∞

0
e−γτµ(γ) dγ =

τH−1/2

Γ(H + 1/2)
. (3.22)
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Thus we can write for Type II:

B
(II)
H (t) =

∫ t

0

∫ ∞

0
e−γ(t−s)µ(γ) dγ dW (s) (3.23)

=

∫ ∞

0

∫ t

0
e−γ(t−s) dW (s)µ(γ) dγ (3.24)

=

∫ ∞

0
(Yγ(t)− Yγ(0))µ(γ) dγ, Yγ(0) = 0 . (3.25)

Alternatively, for H > 1/2, τH−3/2/Γ(H + 1/2) is the Laplace
transform of ν:

τL(ν)(τ) = τ

∫ ∞

0
e−γτν(γ) dγ =

τH−1/2

Γ(H + 1/2)
. (3.26)

Again for Type II, this leads to:

B
(II)
H (t) =

∫ t

0
(t− s)

∫ ∞

0
e−γ(t−s)ν(γ) dγ dW (s) (3.27)

=

∫ ∞

0

∫ t

0
(t− s)e−γ(t−s) dW (s)ν(γ) dγ (3.28)

=

∫ ∞

0
(Uγ(t)− Uγ(0)) ν(γ) dγ, Uγ(0) = 0 . (3.29)

One can show similar derivations for Type I, only differing in the
aforementioned initial conditions. See Harms and Stefanovits
(2019) for the full proof.

Proposition 2 (Markov representation of fBM using only the
Ornstein–Uhlenbeck processes Yγ(t)). The relationship (Harms
and Stefanovits (2019)):

Uγ(t) = −∂γYγ(t) + (∂γYγ(0) + Uγ(0)) e
−γt , (3.30)

allows writing the Markov representation only in function of the
Ornstein–Uhlenbeck processes Yγ(t):

BH(t) =


∫ ∞

0
(Yγ(t)− Yγ(0))µ(γ) dγ,H <

1

2
,

−
∫ ∞

0
∂γ(Yγ(t)− Yγ(0))ν(γ) dγ,H >

1

2
.

(3.31)
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Definition4 (Markov approximationof fBM(MA-fBM)). Eq. (3.31)
suggests that BH(t) could be well approximated by a Markov process
B̂H(t) by (i) truncating the integrals at finite γ values (γ1...γK) and
(ii) approximating the integral by a numerical quadrature as a finite
linear combination involving quadrature points and weights {ωk}.
Changing the notation Yγk(t) → Yk(t):

BH(t) ≈ B̂H(t) ≡
K∑
k=1

ωk (Yk(t)− Yk(0)) , (3.32)

where for fixed γk the choice of ωk depends on H and the choice of
”Type I” or ”Type II”. For ”Type II”, we set Yk(0) = 0. Since Yk(t)
is normally distributed Thm. 2.16 and can be assumed stationary
for ”Type I”, we can simply sample

(
Y

(I)
1 (0), . . . , Y

(I)
K (0)

)
from a

normal distribution with mean 0 and covariance Ck,l = 1/(γk + γl)
(see Eq. (3.98)).

This strong approximation provably bounds the sample paths:

Theorem 3 (Alfonsi and Kebaier (2021)). For rough kernels (H <
1/2) and {ωk} following a Gaussian quadrature rule, there exists a
constant c per every t ∈ (0, T ) such that:

E|B(II)
H (t)− B̂

(II)
H (t)|≤ O(K−cH), where 1 < c ≤ 2, (3.33)

asK → ∞. Note that, in our setting, B(II)
H (0) = B̂

(II)
H (0) = 0.

Remark 4 (Stationarity of the increments of MA-fBM). The incre-
ments ofMA-fBMare stationary for Type I and nonstationary for Type
II:

B̂
(I)
H (t+∆t)− B̂

(I)
H (t)

d
= B̂

(I)
H (∆t) , (3.34)

B̂
(II)
H (t+∆t)− B̂

(II)
H (t)

d
6= B̂

(II)
H (∆t) . (3.35)

This follows naturally from the fact that the underlying Ornstein–
Uhlenbeck processes Yk(t) are stationary for Type I and nonstationary
for Type II, because of their different initial conditions Yk(0). Thus,
MA-fBM has the same similarity properties as fBM (cf. Remark 1).
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3.2.2 SDEs driven by (fractional) BM

Definition 5 (SDEs driven by BM (BMSDE)). A common generative
model for stochastic dynamical systems considers a set of observational
data D = {O1, . . . , ON}, where the Oi are generated (condition-
ally) independent at random at discrete times ti with a likelihood
pθ (Oi | X(ti)). The prior information about the unobserved path
{X(t); t ∈ [0, T ]} of the latent process X(t) ∈ RM is given by the
assumption thatX(t) fulfils the SDE:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dW (t) (3.36)

The drift function bθ (X, t) ∈ RD models the deterministic part of
the change dX(t) of the state variable X(t) during the infinitesimal
time interval dt, whereas the diffusion matrix σθ (X(t), t) ∈ RD×D

(assumed to be symmetric and non–singular, for simplicity) encodes
the strength of the addedGaussianwhite noise process, wheredW (t) ∈
RD is the infinitesimal increment of a vector of independent Wiener
processes during dt.

Definition 6 (SDE driven by fBM (fBMSDE)). Dfn. 8 can be formally
extended to the case of fractional Brownian motion replacing dW (t)
by dBH(t) (Guerra and Nualart (2008)):

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dBH(t). (3.37)

Remark 5. Care must be taken in a proper definition of the diffusion
part in the fBMSDE Eq. (3.37) and in developing appropriate numeri-
cal integrators for simulations, when the diffusion σθ (X(t), t) explic-
itly depends on the state X(t). Corresponding stochastic integrals of
the Itô type cannot be applied when H < 1/2 and other approaches
(which are generalisations of the Stratonovich SDE for H = 1

2) are
necessary (Lysy and Pillai (2013)).

3.3 Methods

Our goal is to extend variational inference (VI) (Bishop and
Nasrabadi (2006)) to the case where the Wiener process
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in Eq. (PRIOR-SDE) is replaced by an fBM as in Dfn. 6.
Unfortunately, the processes defined by Eq. (3.37) are not
Markovian preventing us from resorting to the standard
Girsanov change of measure approach known for ”ordinary” SDE
to compute KL–divergences and ELBO functionals needed
for VI (Opper (2019)). While Tong et al. (2022) leverage
sparse approximations for Gaussian processes, this makes BH

conditioned on a finite but larger number of so–called inducing
variables. We take a completely different and conceptually simple
approach to VI for fBMSDE based on the exact representation
of BH(t) given in Prop. 1. To this end, we first show how
the strong Markov-approximation in Dfn. 4 can be used to
approximate an SDE driven by fBM, before delving into the VI
for the Markov-Approximate fBMSDE.

Definition 7 (Markov-Approximate fBMSDE (MA-fBMSDE)). Sub-
stituting the fBM,BH(t), in Dfn. 6 by the finite linear combination of
OU-processes B̂H(t), we define MA-fBMSDE as:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dB̂H(t), (3.38)

where dB̂H(t) =
∑K

k=1 ωk dYk(t) with dYk(t) = −γkYk(t) dt +
dW (t) (cf. Dfn. 4).

Proposition 3. X(t) can be augmented by the finite number of
Markov processes Yk(t) (approximating BH(t)) to a higher dimen-
sional state variable of the form Z(t)

.
= (X(t), Y1(t), . . . YK(t)) ∈

R(K+1)×D, such that the joint process of the augmented system
becomes Markovian and can be described by an ’ordinary’ SDE:

dZ(t) = hθ (Z(t), t) dt+Σθ (Z(t), t) dW (t), (3.39)

where the augmented drift vector hθ ∈ R(K+1)×D and the augmented
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diffusion matrix Σθ (Z, t) ∈ R(K+1)×D×D are given by

hθ (Z, t) =


bθ (X, t)− σθ (X, t)

∑
k ωkγkYk

−γ1Y1
. . .

−γKYK

 , (3.40)

Σθ (Z, t) =


ω̄σθ(X, t)

ID
...
ID

 , (3.41)

where ID ∈ RD×D is the identity matrix . We will refer to Eq. (3.39)
as the variational prior.

Proof. Each of theD components of the vectors Yk uses the same
scalar weights ωk ∈ R. Also, note that each Yk is driven by the
same vector ofWiener processes. Hence, we obtain the system of
SDEs given by

dX(t) = bθ (X(t), t) dt− σθ (X(t), t)
∑
k

ωkγkYk(t) dt

+ ω̄σθ (X(t), t) dW (t) (3.42)
dYk(t) = −γkYk(t) dt+ dW (t) for k = 1, . . . ,K (3.43)

where ω̄ .
=
∑

k ωk. This system of equations can be collec-
tively represented in terms of the augmented variable Z(t) :=
(X(t), Y1(t), . . . YK(t)) ∈ R(K+1)×D leading to a single SDE speci-
fied by Eqs. (3.39) to (3.41).

Eq. (3.39) represents a standard SDE driven by Wiener noise al-
lowing us to utilise the standard tools of stochastic analysis, such
as the Girsanov change of measure theorem and derive the evi-
dence lower bounds (ELBO) required for VI. This is what we will
exactly do in the sequel.

Proposition 4 (Controlled MA-fBMSDE). The paths of Eq. (3.39)
can be steered by adding a control term u(X,Y1, . . . , YK , t) ∈ RD that
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depends on all variables to be optimised, to the drift hθ resulting in the
transformed SDE, a.k.a. the variational posterior:

dZ̃(t) =
(
hθ

(
Z̃(t), t

)
+Σθ(Z̃(t), t)u(Z̃(t), t)

)
dt

+Σθ

(
Z̃(t), t

)
dW (t) (3.44)

Sketch of the proof. Using the fact that the posterior probability
measure over paths Z̃(t) {Z̃(t); t ∈ [0, T ]} is absolutely con-
tinuous w.r.t. the prior process, we apply the Girsanov theorem
(cf. Sec. 3.7.2) on Eq. (3.39) to write the new drift, fromwhich the
posterior SDE in Eq. (3.44) is obtained.

We will refer to Eq. (3.44) as the variational posterior. In what fol-
lows, we will assume a parametric form for the control function
u(Z̃(t), t) ≡ uφ(Z̃(t), t) (as e.g. givenby aneural network) andwill
devise a scheme for inferring the variational parameters (θ, φ), i.e.,
variational inference.

Proposition 5 (Variational Inference for MA-fBMSDE). The vari-
ational parameters φ are optimised by minimising the KL–divergence
between the posterior and the prior, where the corresponding evidence
lower bound (ELBO) to be maximised is:

log p (O1, O2, . . . , ON | θ) ≥

EZ̃u

[
N∑
i=1

log pθ

(
Oi | Z̃(ti)

)
−
∫ T

0

1

2

∥∥∥uφ (Z̃(t), t)∥∥∥2 dt
−DKL

(
pθ

(
Z̃(0)

)
||qφ

(
Z̃(0)

))]
, (3.45)

where the observations {Oi} are included by likelihoods
pθ

(
Oi | Z̃(ti)

)
and the expectation is taken over random paths

of the approximate posterior process defined by (Eq. (3.44)).

Sketch of the proof. Since we can use Girsanov’s theorem II (Øk-
sendal (2003)), the variational bound derived in Li et al. (2020)
(App. 9.6.1) directly applies.
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Remark 6. It is noteworthy that the measurements with their like-
lihoods pθ

(
Oi | X̃(ti)

)
depend only on the component X̃(t) of the

augmented state Z̃(t). The additional variables Ỹk(t) which are used
to model the noise in the SDE are not directly observed. However,
computation of the ELBO requires initial values for all state variables
Z̃(0) (or their distribution), where the difference between Type I and
Type II MA-fBM is significant. For Type II, Ỹk(0) = 0, for both prior
and posterior, and only X̃(0) needs to be modeled. For Type I, the full
pθ

(
Z̃(0)

)
and qφ

(
Z̃(0)

)
should be incorporated, wherein pθ

(
Ỹk(0)

)
is given by Dfn. 4.

Remark 7. For MA-fBM Type I, in case we want to optimize or learn
pθ

(
Z̃(0)

)
, we need to adhere to Dfn. 4, i.e., pθ

(
Ỹk(0), Ỹl(0)

)
∼

N
(
0, 1

γk+γl

)
. Suppose for simplicity the scalar case D = 1 and

pθ

(
Z̃(0)

)
is modelled with a multivariate Gaussian, we propose a

parameterization

pθ

(
Z̃(0)

)
= N

(
[mθ, 0, . . . , 0]

>,

[
cθ w>

θ

wθ C

])
, (3.46)

C(k,l) =
1

γk + γl
, (3.47)

where mθ ∈ R, αθ ∈ R, wθ ∈ RK , and cθ = eαθ + wθC
−1w>

θ .
This specific construction guarantees a valid covariance matrix (pos-
tive semi-definite) for any choice of αθ and wθ, due to properties of
its Schur complement (Gallier et al. (2010)). This can be trivially
extended to the multi-dimensional case, where the D components of
each Yk(0) are independent.

3.3.1 Optimizing the approximation

In the literature, different choices of γk and ωk have been
proposed (Harms and Stefanovits (2019), Carmona and Coutin
(1998a), and Carmona et al. (2000)) and for certain choices, it is
possible to obtain a superpolynomial rate, as shown by Bayer
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and Breneis (2023a) for the Type II case. In this work we define
our choice of γk as a geometric series, defined by its endpoints

(γ1, . . . , γK) ≡ (γmin, . . . , γmax) , (3.48)

or, more verbose,

γk ≡ γ1−z
min γ

z
max, z =

k − 1

K − 1
, k = 1, . . . ,K . (3.49)

Thus in what follows, the choice of γk is entirely defined by K,
the number of OU processes, and γmin and γmax. Rather than re-
lying onmethods of numerical quadrature, we consider a simple
measure for the quality of the approximation over a fixed time
interval [0, T ] which can be optimised analytically for both types
I and II. To optimize ωk values, we first provide a closed form
expression for the approximation error and then show how we
can solve for the ωk that minimizes this error.

E(I,II)(ω) =

∫ T
0 E

[(
B̂

(I,II)
H (t)−B

(I,II)
H (t)

)2]
dt∫ T

0 E
[
B

(I,II)
H (t)2

]
dt

(3.50)

=

∫ T
0 E

[
B̂

(I,II)
H (t)2

]
dt∫ T

0 E
[
B

(I,II)
H (t)2

]
dt

− 2

∫ T
0 E

[
B̂

(I,II)
H (t)B

(I,II)
H (t)

]
dt∫ T

0 E
[
B

(I,II)
H (t)2

]
dt

+ 1 (3.51)

=
∑
i,j

ωiωj

A
(I,II)
i,j

c(I,II)
− 2

∑
k

ωk
b
(I,II)
k

c(I,II)
+ 1 (3.52)

= ωT A
(I,II)

c(I,II)
ω − 2

b(I,II)

c(I,II)

T

ω + 1 . (3.53)

Where for Type I, using Eqs. (3.1), (3.107) and (3.120),

A
(I)
i,j =

∫ T

0

2− e−γit − e−γjt

γi + γj
dt (3.54)

=
2T + e−γiT−1

γi
+ e−γjT−1

γj

γi + γj
, (3.55)
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b
(I)
k =

∫ T

0

2− e−γkt −Q (H + 1/2, γkt) e
γkt

γ
H+1/2
k

dt

=
2T

γ
H+1/2
k

− TH+1/2

γkΓ(H + 3/2)

+
e−γkT −Q (H + 1/2, γkT ) e

γkT

γ
H+3/2
k

, (3.56)

c(I) =

∫ T

0
V

(I)
H t2H dt = V

(I)
H

T 2H+1

2H + 1
, (3.57)

where Q(z, x) = 1
Γ(z)

∫∞
x tz−1e−t dt is the regularized upper in-

complete gamma function. Similarly for Type II, using Eqs. (3.4),
(3.112) and (3.124),

A
(II)
i,j =

∫ T

0

1− e−(γi+γj)t

γi + γj
dt =

T + e
−
(
γi+γj

)
T−1

γi+γj

γi + γj
, (3.58)

b
(II)
k =

∫ T

0

P (H + 1/2, γkt)

γ
H+1/2
k

dt

=
T

γ
H+1/2
k

P (H + 1/2, γkT )

− H + 1/2

γ
H+3/2
k

P (H + 3/2, γkT ) , (3.59)

c(II) =

∫ T

0
V

(II)
H t2H dt = V

(II)
H

T 2H+1

2H + 1
, (3.60)

whereP (z, x) = 1
Γ(z)

∫ x
0 t

z−1e−t dt is the regularized lower incom-
plete gamma function. The quadratic form (Eq. (3.53)) isminimal
for the solution of

A(I,II)ω∗ = b(I,II) , (3.61)
and the optimal ω∗ results in an approximation error

E(I,II)(ω∗) = 1− b(I,II)

c(I,II)

T

ω∗ . (3.62)

Proposition 6 (Exactly one optimal solution for MA-fBMSDE
weights). There is exactly one solution for the optimal weights ω∗

in Eq. (3.61) for any choice of γk where γk 6= γl for k 6= l and
0 ≤ γk <∞ for all γk.
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Proof. Eq. (3.61) has exactly one solution ifA(I,II) is positive def-
inite, which is defined as

ωTA(I,II)ω > 0 for all ω ∈ RK \ {0} . (3.63)

Since (see Eqs. (3.51) and (3.53))

ωTA(I,II)ω =

∫ T

0
E
[
B̂

(I,II)
H (t)2

]
dt , (3.64)

A is positive definite if∫ T

0
E
[
B̂

(I,II)
H (t)2

]
dt > 0 for all ω ∈ RK \ {0} . (3.65)

This inequality holds unless B̂(I,II)
H (t) = 0. Recall that B̂(I,II)

H (t)
is a linear combination ofK Ornstein–Uhlenbeck processes with
speed of mean reversion γk driven by the same Wiener process.
Under the trivial conditions that γi 6= γj (so they can not be
cancelled out) and 0 ≤ γk <∞, B̂(I,II)

H (t) = 0 ⇐⇒ ω = 0.

3.4 Applications & Evaluations

3.4.1 Fractional Ornstein-Uhlenbeck process

Applying our method on linear problems, allows comparing em-
pirical results to analytical formulations derived e.g. using Gaus-
sian process methodology. We assess the reconstruction capabil-
ity of our method on a fractional Ornstein-Uhlenbeck (fOU) pro-
cess, that is an OU–process driven by fBM: dX(t) = −θX(t) dt+

dB
(I)
H , where the speed of mean reversion θ > 0. This is a

stationary Gaussian process. ForH > 1/2, we have an analytical
solution for the covariance (see Sec. 3.7.3 for more detail):

Cov (X(t1), X(t2))

=
H(2H − 1)

2θ

(
Γ(2H − 1)

e−θt + eθtQ(2H − 1, θt)

θ2H−1

+

∫ t

0
e−θ(t−u)u2H−2 du

)
, t = |t1 − t2| . (3.66)
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Additionally, for the fOU process driven by MA-fBM (Type I):
dX(t) = −θX(t) dt+dB̂

(I)
H , the covariance is given by Eq. (3.155)

(see Sec. 3.7.3 for more detail). Since this is a stationary process,
it does not start at 0 and we need the distribution of the initial
values (X(0), Y1(0), . . . , YK(0)) (Sec. 3.7.3):

Var(X(0)) =
∑
k,l

ωkωl

2θ

(
1−

2γ2l
(θ + γl)(γk + γl)

)
, (3.67)

Cov (X(0), Yl(0)) =
∑
k

ωkγl
(θ + γl)(γk + γl)

, (3.68)

Cov (Yk(0), Yl(0)) =
1

γk + γl
. (3.69)

Lastly, we define amodel that is optimized using ourVI approach.
The control function is a dense neural network with two hidden
layers of 1000 neurons each. Time is encoded using a series
of sine and cosine functions and fed as input to the network,
together with the state of the process

[X(t), Y1(t), . . . , YK(t), s1(t), c1(t), . . . , s8(t), c8(t)] , (3.70)

sn(t) = sin

(
nπt

tmax

)
, cn(t) = cos

(
nπt

tmax

)
, (3.71)

where tmax is the length of the data sequence. The posterior
of the initial conditions qθ(X(0), Y1(0), . . . , YK(0)) is defined by
N (mθ,Cθ) where Cθ is parameterized by its Cholesky decom-
position, such that it is guaranteed to be positive semi-definite.
Concretely, the parameters to be optimized are thus the neural
network weights in uθ, mθ and the Cholesky decomposition of
Cθ.

For easier notation, we define for random variables X ∈ RNX

and Y ∈ RNY the matrixK(X,Y ) ∈ RNX×NY as:

K(X,Y )i,j = E [XiYj ] . (3.72)

We generate one data sample x at time points t using the true
covariance kernel and measurement noise σ:

x ∼ N (0,K(X(t), X(t)) + σ2I) . (3.73)
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Figure 3.2 Visualization of the fractional Ornstein–Uhlenbeck
(fOU) process with H = 0.7, θ = 5 and measurement noise
σ = 0.1, for 12 equally spaced measurements between t = 0 and
t = 2. Posterior distributions are shown as themean±1 standard
deviation. The approximated kernel is close to the true kernel,
showing the good approximation quality of MA-fBM. Similarly
the learned posterior model using VI is close to the true kernel,
showing the validity of our VI approach.

Using Gaussian process methodology (Rasmussen, Williams, et
al. (2006)), we can derive the exact posterior at test points t∗ using
the true kernel:

E
[
X̃(t∗)

]
= K(t∗, t)

(
K(t, t) + σ2I

)−1
x , (3.74)

E
[
X̃(t∗)

2
]
= K(t∗, t∗)

−K(t∗, t)
(
K(t, t) + σ2I

)−1
K(t, t∗) , (3.75)

and similarly for the approximated covariance for X̂(t∗). We
compare the analytical solution using the true and the approxi-
mated kernels, with the VI approach in Fig. 3.2 shows a visual
comparison of the analytical solution (true and approximated),
and the VI approach. The VI approach is visualized by sampling
256 posterior paths of the trained model, and showing the mean
and ±1 standard deviation. The approximated kernel is close to
the true kernel, showing the good approximation quality of MA-
fBM. And the learned model using VI is close to the true kernel,
showing the validity of our VI approach.

Our approach additionally allows us to estimate the Hurst index
H and the speed of mean reversion θ. We can simply add the
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Figure 3.3 Joint learning of the posterior model, and H and θ
using gradient descent. The log evidence using the true kernel is
shown as reference. The gray path shows the optimization path
ofH and θ, initialized at respectively 0.5 and 1. The black dot in-
dicates the trueH and θ, and the green dot and green cross show
the theoretical maximum log evidence using the true kernel and
the approximated kernel, respectively. There is some distance
between the true values and the maximum log evidence, which
is expected due to the limited number of measurements and the
measurement noise. The estimation of H and θ is reasonably
close to the theoretical maximum log evidence using the MA
kernel. This shows that our VI approach is valid and suitable for
estimating the parameters of the fOU process.

parameters to the model, and optimize the ELBO with respect to
these parameters using gradient descent, jointly with the control
function and posterior of the initial values. This leads to the
results for an estimation ofH and θ presented in Fig. 3.3, on the
same data sequence of Fig. 3.2.

3.4.2 Estimating time-dependent Hurst index

Since ourmethod of optimizing ωk is tractable and differentiable,
we can directly optimize a parameterized H by maximizing the
ELBO. Also a time–dependent Hurst indexH(t) can bemodelled,
leading to multifractional Brownian Motion (Peltier and Véhel
(1995)). We directly compare with a toy problem presented in
Tong et al. 2022, Sec. 5.2. We use the same model for H(t), a
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Figure 3.4 Estimating time–dependentH(t) from data.

neural network with one hidden layer of 10 neurons and activa-
tion function tanh, and a final sigmoid activation, and the same
input [sin(t), cos(t), t]. We use B̂(II)

H since their method is Type
II. Fig. 3.4 shows a reasonable estimation ofH(t), which is more
accurate than the result from Tong et al. (2022), cf. Sec. 3.7.5 for
more details.

3.4.3 Financial data

The fractional Cox-Ingersol-Ross (fCIR) process (Lysy and Pillai
(2013)) is defined as

dX(t) = −θt(X(t)− µt) dt+ σtX(t)1/2 dBHt(t) . (3.76)

Within our framework, we define the fCIR process as the prior,
and train a posterior SDE on 3-Month US Treasury Bills data from
1954 to 2013 (Fig. 3.5). Note that we defined the fCIR process with
time-dependent parameters (θt, µt, σt,Ht). This allows us to use
it to model the full range of data, where the parameters would
change over time, at a relatively slow rate. We parameterize
the parameters using a cubic spline, with 50 points (meaning
aroundonepoint per year). The control function for the posterior
is parameterized as a fully connected neural network with one
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Figure 3.5 3-Month US Treasury Bills.

hidden layer of 1000 neurons and the tanh activation function.
Its input is the state of the posterior (X̃(t), Ỹ1(t), . . . , ỸK(t)) and
a learned time-encoding ft ∈ R8. ft is a learned feature vector
that is defined seperately for each day in the dataset, and linearly
interpolated inbetween. We use Type I MA-fBM with time hori-
zon T set at 14863, the number of days in the dataset. We set
the integration timestep ∆t at 0.5, and choose γmax at 0.9, so the
condition is not violated. We then chose γmin = 10−5 andK = 25
for the lowest approximation error, based on plots we generated
for these conditions as in Figs. 3.13 to 3.15. We also compare to
the fractional Ornstein-Uhlenbeck (fOU) process

dX(t) = −θt(X(t)− µt) dt+ σt dBHt(t) . (3.77)

For training, we take subsets of the data that are 1260 days long.
For the initial values, we take X̃(t0) as the given first datapoint x0.
Fig. 3.6 shows the estimated time-dependent Hurst index Ht for
both the fCIR and the fOU process.

3.4.4 Latent videomodels

To assess the video modelling capabilities of our framework, we
train models on stochastic video datasets. The prior drift hθ,
diffusion σθ and control term u are parameterized by neural net-
works. The prior model is used as a stochastic video predictor,
where we condition on the first N frames to predict the next
frames in the sequence. More intuitively, the posterior model
reconstructs the given sequence of frames, whileminimizing the

104



3.4 Applications & Evaluations

1960 1970 1980 1990 2000 2010
0.00

0.25

0.50

0.75

1.00

H
t

fCIR

fOU

Figure 3.6 Estimate of time dependent HurstHt on the 3-Month
US Treasury Bills dataset.

Figure 3.7 Schematic of the latent SDE video model. Video
frames {oi}i are encoded to vectors {hi}i. The static content
vector w, that is free of the dynamic information, is inferred
from {hi}i. The context model processes the information with
temporal convolution layers, so that its outputs {gi}i contain in-
formation from neighbouring frames. A linear interpolation on
{gi}i allows the posterior SDEmodel to receive time–appropriate
information g(t), at (intermediate) time–steps chosen by the SDE
solver. Finally, the states {xi}i and static w are decoded to recon-
struct frames {o′i}i.
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Table 3.1 Stochastic Moving MNIST results.
Model ELBO PSNR

SVG N/A 14.50
SLRVP N/A 16.93
BM −913.60 14.90
MA-fBM −608.00 15.30

Table 3.2 Double pendulum results.
Model ELBO PSNR

BM −545.13 26.11
MA-fBM −636.61 27.09

control actions of u. This leads to a prior that will model the
dataset, so that the posterior will be able tomodel the specific data
sequence during training with minimal u input. It is paramount
that the control function u receives relevant information during
the SDE integration, so that it can steer the SDE in the right direc-
tion. See Fig. 3.7 for a schematic explanation of our model and
Sec. 3.7.5 for a detailed explanation of submodel architectures
and hyperparameters.

We evaluate the stochastic video predictions by sampling 100
predictions and reporting the Peak Signal-to-Noise Ratio (PSNR)
of thebest sample, calculated frame-wise andaveragedover time.
This is the same approach as Franceschi et al. (2020)which allows
a direct comparison. Furthermore, we report the ELBO on the
test set, indicating how well the model has captured the data.

We train models on Stochastic MovingMNIST (SM-MNIST) (Den-
ton and Fergus (2018)), a video dataset where two MNIST num-
bers move on a canvas and bounce off the edge with random ve-
locity in a random direction. OurMA-fBM drivenmodel is on par
with closely related discrete-time methods such as SVG (Denton
and Fergus (2018)) or SLRVP (Franceschi et al. (2020)), in terms of
PSNR, and is better than the BM baseline in terms of PSNR and
ELBO (Tab. 3.1). The Hurst index was optimized during training,
and reachedH = 0.90 at convergence (long-termmemory), indi-
cating that MA-fBM is better suited to the data than BM.
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We also report results on a real-world video dataset of a double
pendulum (Asseman et al. (2018)), where we investigate whether
the chaotic behaviour can be modelled by an SDE driven by fBM.
Our MA-fBM driven model is better than the BM baseline, both
for the test set ELBO as for the PSNRmetric (Tab. 3.2). The Hurst
index reached a value ofH = 0.93 at convergence. See Fig. 3.8 for
stochastic video predictions and Sec. 3.7.6 for additional qualita-
tive results.

3.5 Further Studies

We implemented our method in JAX (Bradbury et al. (2018)), us-
ing Diffrax (Kidger (2021)) for SDE solvers, Optax (Babuschkin et
al. (2020)) for optimization, Diffrax (Babuschkin et al. (2020)) for
distributions and Flax (Heek et al. (2023)) for neural networks.
Unlike Tong et al. (2022) our approach is agnostic to discretization
and the choice of the solver. Hence, in all experimentswe canuse
the Stratonovich–Milstein solver, cf. Sec. 3.7.5 for more details.

3.5.1 Sampling trajectories for qualitative evaluation of the
Markov approximation

Since fBM and MA-fBM processes are Gaussian, we can sample
trajectories on predefined time points by using their respective
covariance kernels. By choosing a list of N time points
(t1, . . . , tN ), we calculate covariance matrices K, C and K̂
defined as

Ki,j = E [BH(ti)BH(tj)] , (3.78)

Ci,j = E
[
BH(ti)B̂H(tj)

]
, (3.79)

K̂i,j = E
[
B̂H(ti)B̂H(tj)

]
, (3.80)

wherewe have respectively Eqs. (3.1), (3.107) and (3.119) for Type
I and Eqs. (3.4), (3.112) and (3.123) for Type II. We start by sam-
pling a trajectory x of the true fBM process BH(t):

x ∼ N (0,K) . (3.81)
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(a) BM

(b)MA-fBM

Figure 3.8 Stochastic video predictions using the trained prior
of a model driven by BM (a) and a model driven by MA-fBM
(b) trained on the double pendulum dataset. The initial state is
conditioned on the same data for all samples. Four samples are
shown for eachmodel, and 7 evenly spaced frames from the total
of 20 frames in the sequence are shown. The MA-fBM samples
showamore diverse, chaotic behaviour, thus better capturing the
dynamics in the data.

Next, we sample a trajectory x̂ of the MA-fBM process B̂H(t) by
using the conditional distribution on x:

x̂ ∼ N (µ|x,Σ|x) , (3.82)
µ|x = C>K−1x , (3.83)

Σ|x = K̂ −C>K−1C . (3.84)
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3.5 Further Studies

This approach allows us to qualitatively evaluate the Markov ap-
proximation by visually comparing sampled trajectories of the
true fBM process and the MA-fBM process. In Figs. 3.9 to 3.12,
we show the sampled trajectories for both Type I and Type II for
various Hurst indicesH and number of OU–processesK.
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(a)H=0.1 (Type I)
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Figure 3.9 Generated trajectories of (a) Type I and (b) Type II
MA-fBM compared to true fBM for varyingK andH = 0.1.
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(a)H=0.3 (Type I)
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Figure 3.10 Generated trajectories of (a) Type I and (b) Type II
MA-fBM compared to true fBM for varyingK andH = 0.3.

3.5.2 Numerical analysis of the approximation accuracy

Recent works on the Markov approximation of fBM have dis-
cussions and proofs on optimal rates of convergence with the
number of Markov processes used in the approximation (Harms
(2020) and Bayer and Breneis (2023a, 2023b)). The closed-form
optimal solution presented in Sec. 3.3.1 does not allow a rate
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Figure 3.11 Generated trajectories of (a) Type I and (b) Type II
MA-fBM compared to true fBM for varyingK andH = 0.7.
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0 2 4 6 8 10

t

−1

0

1

2

3

X
(t

)

K = 5

K = 10

K = 15

K = 20

K = 25

True path

(b)H=0.9 (Type II)

Figure 3.12 Generated trajectories of (a) Type I and (b) Type II
MA-fBM compared to true fBM for varyingK andH = 0.9.

of convergence analysis, since its from is free of any structure.
In this section we provide numerical analysis of the errors for
varyingH, number of Markov processesK and choices of γk.

To find optimal (γmin, γmax) values, one can perform grid
searches, for varying Hurst H, number of Markov processes
K and time horizon T values, for both types I and II. We use
the approximation error defined in Eq. (3.62) as a metric and
show an example of this in Fig. 3.13. Figs. 3.14 and 3.15 shows
the approximation error for varying H and K. Note that
Carmona and Coutin (1998b) show that γk∆t > 1/2 leads to
unstable integration of the OU–processes, where ∆t is the
integration step. Care should be taken that γmax∆t < 1/2,
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(a) Type I (b) Type II

Figure3.13 Approximation error forType I andType IIwith time
horizon T = 10, Hurst index 0 < H < 1 and number of OU–
processesK = 5. For Type II, decreasing γmin below 1/T appears
to be unneccesary, as the OU–process governed by γmin (with the
longest time-dependency) reaches equilibrium after 1/γmin. For
Type I, a longer time-dependency than the time horizon T is still
relevant, since this is taken into account by the definition of Type
I fBM. The part of this longer time-dependency that precedes the
start time of the model (t = 0) is modelled by the initial values
(Y1(0), . . . , YK(0)).
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Figure 3.14 MA-fBMApproximation error for varyingK in func-
tion of H and with a time horizon T = 10, γmin = 10−2 and
γmax = 102.
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Figure 3.15 MA-fBM Approximation error for varying Hurst in-
dex and a time horizon T = 10, in function ofK and with γmin =
10−2 and γmax = 102.

either by decreasing γmax or decreasing the integration step ∆t.
Lastly, since an OU–process reaches equilibrium after time 1/γ,
a practical lower bound in the case of Type II for γmin is T , the
length of themodelled sequences. This ensures that thememory
of the MA-fBM process is modelled for at least the length of the
sequence. For Type I, this is not valid since an infinite history is
approximated.

3.5.3 Impact ofK and the#parameters on inference time

We investigate the factors that influence the training time
in Fig. 3.16, where K OU–processes are gradually included to
systems with increasing number of network parameters. Note
that, since our approximation is driven by 1 Wiener process,
and the control function u(Z̃(t), t) is scalar, the impact on
computational load of including more processes is limited
and the run-time is still dominated by the size of the neural
networks. This is good news as different applications might
demand different number of OU–processes.
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Figure 3.16 Impact ofK on the inference time of a typicalmodel
with varying capacity. The scale of the neural networks has a
higher impact on the speed thanK.

3.6 Conclusion

In this chapter, we have proposed a new approach for performing
variational inference on stochastic differential equations driven
by fractional Brownian motion (fBM). We began by uncovering
the relatively unexplored Markov representation of fBM,
allowing us to approximate non-Markovian paths using a linear
combination of Wiener processes. This approximation enabled
us to derive evidence lower bounds through Girsanov’s change of
measure, yielding posterior path measures as well as likelihood
estimates. We also solved for optimal coefficients for combining
these processes, in closed form. Our diverse experimental
study, spanning fOU bridges and Hurst index estimation,
have consistently validated the effectiveness of our approach.
Moreover, our novel, continuous-time architecture, powered by
Markov-approximate fBM driven neural-SDEs, has demonstrated
improvements in video prediction, particularly when inferring
the Hurst parameter during inference.

Limitations and future work. In our experiments, we observed
increased computational overhead for larger time horizons due
to SDE integration, although the expansion of the number of pro-
cesses incurred minimal runtime costs. We have also observed
super-polynomial convergence empirically and recalled weaker
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polynomial rates in the literature. Our Markov approximation
still lacks a tight convergence bound. Our future work will also
extend our framework to (fractional) Levy processes, which offer
enhanced capabilities formodeling heavy-tailed noise/data distri-
butions.

3.7 Appendix

3.7.1 State dependent diffusions

For the case, where the diffusion σ(X, t) explicitly depends on
the state variable X, our Markovian approximation results in a
’standard’ white noise SDE for the augmented system. As such, it
does not suffer fromproblemswith proper definitions of stochas-
tic integrals as compared to the original SDE driven by fBM for
such cases. Hence, a straightforward Itô–interpretation of our
augmented SDE is, in principle, possible. This might indicate, at
first glance, that simple numerical solvers such as Euler’smethod
could be sufficient for simulating the augmented SDE required
for computing posterior expectations for the ELBO. While this
point needs further theoretical investigation, preliminary sim-
ulations for for simple models with state dependent diffusions
indicate that an Euler approximation (in accordance with known
results for direct simulations of SDE driven by fBM (Lysy and
Pillai (2013))) quickly lead to deviations from known analytical
results. Hence, for state dependent diffusions, we resort to the
Stratonovich interpretation of the augmented system and use
corresponding higher order solvers (Kidger (2021))2. This ap-
proach yields excellent (pathwise) agreements with exact ana-
lytical results as we show in Sec. 3.4.1. Although the ELBO for
SDE is derived from Girsanov’s change of measure theorem for
Itô–SDE, by the known correspondence (resulting in a change of
drift functions, when diffusions are state dependent) (Gardiner
et al. (1985)) between Itô and Stratonovich SDE we conclude that
within this approach, optimisation of the ELBO with respect to

2. see e.g., https://docs.kidger.site/diffrax/usage/how-to-choose-a-solver/
#stochastic-differential-equations
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model parameters will also yield the corresponding estimates for
the Stratonovich interpretation.

3.7.2 The Girsanov theorem II and the KL divergence of
measures

We now state the variation II of the Girsanov theorem (Øksendal
(2003)) in our notation. Let X(t) ∈ Rn be an Itô process w.r.t.
measure P of the form:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dW (t), (3.85)

where 0 ≤ t ≤ T ,W (t) ∈ Rm, bθ (X(t), t) ∈ Rn and σθ (X(t), t) ∈
Rn×m. Define a measureQ via:

dQ

dP
=MT := exp

[
−
∫ T

0
u(X(t), t) dW (t)

− 1

2

∫ T

0
u2(X(t), t) dt

]
. (3.86)

Then

W ′(t) :=

∫ T

0
u(X(t), t) dt+W (T ) , (3.87)

is a Brownian motion w.r.t. Q and the process X(t) has the fol-
lowing representation in terms ofW ′(t):

dX(t) = αθ (X(t), t) dt+ σθ (X(t), t) dW ′(t), (3.88)

where the new drift is:

αθ (X(t), t) = bθ (X(t), t)− σθ (X(t), t)u (X(t), t) . (3.89)

We can also rewrite the Radon–Nykodim derivative in Eq. (3.86)
as
dQ

dP
= exp

[∫ T

0
u (X(t), t) dW (t)− 1

2

∫ T

0
u2 (X(t), t) dt

]
(3.90)

= exp

[∫ T

0
u (X(t), t)

(
dW ′(t) + u (X(t), t) dt

)
− 1

2

∫ T

0
u (X(t), t) dt

]
(3.91)

= exp

[∫ T

0
u (X(t), t) dW ′(t) +

1

2

∫ T

0
u (X(t), t) dt

]
. (3.92)
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Thus, similar to Li et al. (2020), we get the KL divergence

EQ

[
ln

dQ

dP

]
=

1

2

∫ T

0
EQ[u

2 (X(t), t)] dt. (3.93)

3.7.3 Covariances

Ornstein-Uhlenbeck processes. Observe two Ornstein-
Uhlenbeck (OU) processes driven by the sameWiener process:{

dYk(t) = −γkYk(t) dt+ dW (t) ,

dYl(t) = −γlYl(t) dt+ dW (t) .
(3.94)

When the processes start at−∞, they are stationary and in equi-
librium at t = 0. Using Itô isometry (see Sec. 1.6.3), the covari-
ance between the two processes at respectively time t1 and t2 is

Cov (Yk(t1), Yl(t2))

= E
[∫ t1

−∞
e−γk(t1−s) dW (s)

∫ t2

−∞
e−γl(t2−s) dW (s)

]
(3.95)

=

∫ min(t1,t2)

−∞
e−γk(t1−s)e−γl(t2−s) ds (3.96)

=
e−γt|t1−t2|

γk + γl
, γt =

{
γk, t1 > t2 ,

γl, t1 < t2 .
(3.97)

This means that the covariance at equilibrium (t = 0) is

Cov (Yk(0), Yl(0)) =
1

γk + γl
. (3.98)

Alternatively, when the processes start at t = 0with initial values
Yk(0) = Yl(0) = 0, the covariance is

Cov (Yk(t1), Yl(t2))

= E
[∫ t1

0
e−γk(t1−s) dW (s)

∫ t2

0
e−γl(t2−s) dW (s)

]
(3.99)

=

∫ min(t1,t2)

0
e−γk(t1−s)e−γl(t2−s) ds (3.100)

=
e−γt|t1−t2| − e−γkt1−γlt2

γk + γl
γt =

{
γk, t1 > t2 ,

γl, t1 < t2 .
(3.101)
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MA-fBM (Type I). Recall that (Dfn. 4)

B̂
(I)
H (t) =

∑
k

ωk(Yk(t)− Yk(0)) , (3.102)

where Yk(t) starts at−∞ and is stationary. Thus

Cov
(
B̂

(I)
H (t1), B̂

(I)
H (t2)

)
= E

[(∑
k

ωk (Yk(t1)− Yk(0))

)

·

(∑
k

ωk (Yk(t2)− Yk(0))

)]
(3.103)

=
∑
k,l

ωkωlE[(Yk(t1)− Yk(0)) (Yl(t2)− Yl(0))] (3.104)

=
∑
k,l

ωkωl

(
E [Yk(t1)Yl(t2)]− E [Yk(t1)Yl(0)]

− E [Yk(0)Yl(t2)] + E [Yk(0)Yl(0)]
)

(3.105)

=
∑
k,l

ωkωl
1− e−γkt1 − e−γlt2 + e−γt|t1−t2|

γk + γl
,

γt =

{
γk, t1 > t2 ,

γl, t1 < t2 ,
, (3.106)

=
∑
k,l

ωkωl
1− e−γkt1 − e−γlt2 + e−γk|t1−t2|

γk + γl
(3.107)

using Eq. (3.97) and where the last simplifying step is possible
due to the symmetry of the double summation.

MA-fBM (Type II). Recall that (Dfn. 4)

B̂
(II)
H (t) =

∑
k

ωkYk(t), Yk(0) = 0, k = 1, . . . ,K . (3.108)
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Thus

Cov
(
B̂

(II)
H (t1), B̂

(II)
H (t2)

)
= E

[(∑
k

ωkYk(t1)

)(∑
l

ωlYl(t2)

)]
(3.109)

=
∑
k,l

ωkωlE [Yk(t1)Yl(t2)] (3.110)

=
∑
k,l

ωkωl
e−γt|t1−t2| − e−γkt1−γlt2

γk + γl
,

γt =

{
γk, t1 > t2 ,

γl, t1 < t2 ,
, (3.111)

=
∑
k,l

ωkωl
e−γk|t1−t2| − e−γkt1−γlt2

γk + γl
, (3.112)

using Eq. (3.101) and where the last simplifying step is possible
due to the symmetry of the double summation.

fBM andMA-fBM (Type I). Since (Dfn. 4)

B̂
(I)
H (t) =

∑
k

ωk(Yk(t)− Yk(0)) , (3.113)

where (Eq. (3.20))

Yk(t)− Yk(0) = Yk(0)(e
−γkt − 1) +

∫ t

0
e−γk(t−s) dW (s) , (3.114)

and Yk(t) starts at−∞:

Yk(0) =

∫ 0

−∞
eγks dW (s) , (3.115)

we can write

B̂
(I)
H (t) =

∑
k

ωk

(
(e−γkt − 1)

∫ 0

−∞
eγks dW (s)

+

∫ t

0
e−γk(t−s) dW (s)

)
. (3.116)
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Using Eq. (3.7) and Itô isometry (see Sec. 1.6.3) we can express
the covariance as

Cov
(
B

(I)
H (t1), B̂

(I)
H (t2)

)
=

1

Γ(H + 1/2)

∑
k

ωkE

[
(∫ 0

−∞

(
(t1 − s)H−1/2 − (−s)H−1/2

)
dW (s)

+

∫ t1

0
(t1 − s)H−1/2 dW (s)

)
·
(
(e−γkt2 − 1)

∫ 0

−∞
eγks dW (s)

+

∫ t2

0
e−γk(t2−s) dW (s)

)]
(3.117)

=
1

Γ(H + 1/2)

∑
k

ωk

(

(e−γkt2 − 1)

∫ 0

−∞

(
(t1 − s)H−1/2 − (−s)H−1/2

)
eγks ds

+

∫ min(t1,t2)

0
(t1 − s)H−1/2e−γk(t2−s) ds

)
(3.118)

=
∑
k

ωk
1

γ
H+1/2
k

(
1− e−γkt2 − eγkt1Q(H + 1/2, γkt1)

+ e−γk(t2−t1)Q (H + 1/2, γk max(t1 − t2, 0))
)

(3.119)

where Q(z, x) = 1
Γ(z)

∫∞
x tz−1e−t dt is the regularized upper in-

complete gamma function. For the special case t = t1 = t2 we
arrive at

Cov
(
B

(I)
H (t), B̂

(I)
H (t)

)
=
∑
k

ωk
2− e−γkt − eγktQ(H + 1/2, γkt)

γ
H+1/2
k

. (3.120)

fBM and MA-fBM (Type II). Using Dfn. 4 and Eq. (3.8) we can
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write the covariance as

Cov
(
B

(II)
H (t1), B̂

(II)
H (t2)

)
=

1

Γ(H + 1/2)

∑
k

ωkE

[∫ t1

0
(t1 − s)H−1/2 dW (s)

·
∫ t2

0
e−γk(t2−s) dW (s)

]
(3.121)

=
1

Γ(H + 1/2)

∑
k

ωk

·
∫ min(t1,t2)

0
(t1 − s)H−1/2e−γk(t2−s) ds (3.122)

=
∑
k

ωk
e−γk(t2−t1)

γ
H+1/2
k

(
Q(H + 1/2, γk max(t1 − t2, 0))

−Q(H + 1/2, γkt1)
)
. (3.123)

For the special case t = t1 = t2 we arrive at

Cov
(
B

(II)
H (t), B̂

(II)
H (t)

)
=
∑
k

ωk
P (H + 1/2, γkt)

γ
H+1/2
k

(3.124)

whereP (z, x) = 1
Γ(z)

∫ x
0 t

z−1e−t dt is the regularized lower incom-
plete gamma function.

Stationary fractional Ornstein–Uhlenbeck process. For the
stationary fractional Ornstein-Uhlenbeck (fOU) process driven
by true fBM (Type I), the covariance is given by Lysy and Pillai
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(2013), Appendix A3, where t = |t1 − t2|:

Cov (X(t1), X(t2)) =
H(2H − 1)

2θ

∫ ∞

−∞
e−θ|t−u||u|2H−2du (3.125)

=
H(2H − 1)

2θ

(
e−θtΓ(2H − 1) + eθtΓ(2H − 1, θt)

θ2H−1

+ e−θt

∫ t

0
eθuu2H−2 du

)
(3.126)

=
H(2H − 1)

2θ

(
Γ(2H − 1)

e−θt + eθtQ(2H − 1, θt)

θ2H−1

+

∫ t

0
e−θ(t−u)u2H−2 du

)
(3.127)

Studying the stationary fOU process is thus possible for H >
1/2, allowing us to further research the validity of our approach.
Here, we will derive the necessary covariances for the stationary
fOU process driven by MA-fBM (Type I):

{
dX(t) = −θX(t) dt+ σ

∑
k ωk dYk(t)

dYk(t) = −γkYk(t) dt+ dW (t)
(3.128)

The stationary fOU process starts at equilibrium, thus we need to
calculate covariances at t = 0 to be able to sample the necessary
initial values of the process. At equilibrium (Eq. (3.98)):

Cov (Yk(0), Yl(0)) =
1

γk + γl
(3.129)

and we start by using Itô calculus (see Sec. 1.6.2) to derive other

3. Please note there is a small mistake in Lysy and Pillai (2013), Appendix
A, in the working out of the indefinite integral. We start from the indefinite
integral, which is correct.
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useful covariances:

E [dYk(0) dYl(0)] = dt (3.130)
E [dYk(0)Yl(0)] = −γkE [Yk(0)Yl(0)] dt (3.131)
E [dX(0)Yl(0)]

= −θE [X(0)Yl(0)] dt+ σ
∑
k

ωkE [dYk(0)Yl(0)] (3.132)

= −θE [X(0)Yl(0)] dt− σ
∑
k

ωkγkE [Yk(0)Yl(0)] dt (3.133)

= −θE [X(0)Yl(0)] dt− σ
∑
k

ωk
γk

γk + γl
dt (3.134)

E [X(0) dYl(0)] = −γlE [X(0)Yl(0)] dt (3.135)

E [dX(0) dYl(0)] = σ
∑
k

ωkE [dYk(0) dYl(0)] (3.136)

= σ
∑
k

ωk dt (3.137)

E [X(0) dX(0)]

= −θE
[
X2
]
dt+ σ

∑
l

ωlE [X(0) dYl(0)] (3.138)

= −θE
[
X2
]
dt− σ

∑
l

ωlγlE [X(0)Yl(0)] dt (3.139)

E [dX(0) dX(0)] = σ2
∑
k,l

ωkωlE [dYk(0) dYl(0)] (3.140)

= σ2
∑
k,l

ωkωl dt (3.141)

Itô yields d(X(0)Yl(0)) = dX(0)Yl(0)+X(0) dYl(0)+dX(0) dYl(0)
and at equilibrium E [d(X(0)Yl(0))] = 0 thus

0 = −θE [X(0)Yl(0)] dt− σ
∑
k

ωk
γk

γk + γl
dt

− γlE [X(0)Yl(0)] dt+ σ
∑
k

ωk dt (3.142)

= −(θ + γl)E [X(0)Yl(0)] + σ
∑
k

ωk

(
1− γk

γk + γl

)
(3.143)

= −(θ + γl)E [X(0)Yl(0)] + σ
∑
k

ωk
γl

γk + γl
, (3.144)
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thus

Cov (X(0)Yl(0)) = σ
∑
k

ωkγl
(θ + γl)(γk + γl)

. (3.145)

Likewise, Itô yields d(X(0)2) = 2X(0) dX(0) + dX(0) dX(0) and
at equilibrium E [d (Yk(0)Yl(0))] = 0 thus

0 = 2

(
−θE

[
X(0)2

]
dt− σ

∑
l

ωlγlE [X(0)Yl(0)] dt

)
+ σ2

∑
k,l

ωkωl dt (3.146)

= −2θE
[
X(0)2

]
− 2σ2

∑
k,l

ωkωl
γ2l

(θ + γl)(γk + γl)

+ σ2
∑
k,l

ωkωl , (3.147)

Var (X(0)) = σ2
∑
k,l

ωkωl

2θ

(
1−

2γ2l
(θ + γl)(γk + γl)

)
. (3.148)

We can now derive the covariance of the process itself.

X(t) = X(0)e−θt +

∫ t

0
e−θ(t−s) dB̂

(I)
H (s)︸ ︷︷ ︸

I

, (3.149)

I =
∑
k

ωk

∫ t

0
e−θ(t−s) (−γkYk(s) ds+ dW (s)) (3.150)

=
∑
k

ωk

∫ t

0
e−θ(t−s)

(
−γk

(
Yk(0)e

−γks

+

∫ s

0
e−γk(s−r) dW (r)

)
ds+ dW (s)

)
(3.151)

=
∑
k

ωk

(
− γkYk(0)

∫ t

0
e−θ(t−s)−γks ds

+

∫ t

0
−γke−θ(t−s)

∫ s

0
e−γk(s−r) dW (r) ds

+

∫ t

0
e−θ(t−s) dW (s)

)
, (3.152)
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Since the stochastic integrals in the last two terms start at 0, they
are uncorrelated withX(0) and we can write:

E [X(0)X(t)] = E
[
X(0)2

]
e−θt

−
∑
k

ωkγkE [X(0)Yk(0)]

∫ t

0
e−θ(t−s)−γks dt , (3.153)

in which the covariances on the right hand side are given
by Eqs. (3.145) and (3.148) and where

∫ t

0
e−θ(t−s)−γks dt =


e−θt − e−γkt

γk − θ
, θ 6= γk,

te−θt, θ = γk .

(3.154)

Finally, from the stationarity of the process follows:

Cov (X(t1), X(t2)) = E [X(0)X(t = |t2 − t1|)] . (3.155)

3.7.4 An alternative approach for Markov approximation of
fractional Brownianmotion

For H > 1/2, we can define the Markov representation in terms
of Uk processes instead of Yk processes (see Prop. 1), such that
(compare to Eq. (3.31)):

BH(t) =

∫ ∞

0
(Uγ(t)− Uγ(0)) ν(γ) dγ, H > 1/2 , (3.156)

where
dUγ(t) = (−γUγ(t) + Yγ(t)) dt . (3.157)

We chose to work only with Yk processes in Chapter 3 for simplic-
ity. Otherwise, onewouldneed to switchbetweenYk andUk when
crossing H = 0.5, and augmenting the state would add 2K extra
processes instead ofK. One could say we have approximated Uk

by finite differencing neighboring Yk processes. Thus, our opti-
mal ω weights approach implicitly handles this finite differenc-
ing. This begs the question, would the MA-fBM approximation
improve by using the Z processes directly? We investigate this,
specifically for Type I.

124



3.7 Appendix

0.00 0.25 0.50 0.75 1.00

H

0.00

0.25

0.50

0.75

1.00
E

K = 10

K = 15

K = 20

K = 25

(a) Type I.

0.00 0.25 0.50 0.75 1.00

H

0.00

0.25

0.50

0.75

1.00

E

K = 10

K = 15

K = 20

K = 25

(b) Type I, using the Uk processes.

Figure 3.17 MA-fBMApproximation error for varyingK in func-
tion of H and with a time horizon T = 10, γmin = 10−2 and
γmax = 102.

Starting from theA(I) and b(I) from Chapter 3, we can construct
analogouslyA(Z) and b(Z):

A
(Z)
(k,l) =

∂2

γkγl
A

(I)
(k,l), (3.158)

b
(Z)
(k) =

∂

γk
b
(I)
(k) . (3.159)

This leads to the following error rates in function ofH presented
in Fig. 3.17. The error slightly improves for lower values of K,
which is to be expected because the original approach implicitly
approximates theUk processes byfinite differencingneighboring
Yk processes, thus benefits fromahigher number of processesK.
The original MA-fBM approximates ∂γYγ(t), thus it is not surpris-
ing that the error is lower using the U processes. However the
difference is only small, and the error still goes up to 1 towards
H = 1. The practical benefit of working out a Markov approxi-
mation using both Yk and Uk processes thus seems limited.

3.7.5 Details on Model Architectures & Hyperparameters

Time dependent Hurst index. We directly compare our
method with the data and estimate found in the published
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codebase of Tong et al. (2022)4. We choose K = 5 and
γk = ( 1

20 , . . . , 20) and use ”Type II” (to match the data and
noise type in Tong et al. (2022)). The optimal definitions for ωk,
with time horizon T = 2 are used. The control function is a
neural network with two hidden layers of each 1000 neurons,
with tanh activation function. Its input is represented as
[sin t, cos t, sin 2t, cos 2t, . . . , sin 5t, cos 5t,X(t), Y1(t), . . . , YK(t)].
The model is trained for 1000 training steps with a batch size
of 4. We use the Adam (Kingma and Ba (2015)) optimizer
with a learning rate 3 × 10−3, scheduled with cosine decay
to 3 × 10−4 by the end of training. We use the Stratonovich-
Milstein SDE solver (Kidger (2021)). The integration step is
0.005 and observation noise σ = 0.025 (both identical to Tong
et al. (2022)).

Latent video model.Stochastic moving MNIST. For the MA-fBM
model, K = 5 and γk = ( 1

20 , . . . , 20). We use ”Type I” and the
corresponding definitions for ωk, with a time horizon T = 2.4.
For the BM model, K = 1, γ1 = 0 and ω = 1, which naturally
corresponds to white Brownian motion. The number of latent
dimensionsD = 6.

The encodermodel consists of four blocks, containing a convolu-
tion layer, maxpool, groupnorm and SiLU activation. Each block
reduces spatial dimension by 2, and the number of features in
each block is (64, 128, 256, 256). The last output is flattened and is
the input of a dense layer, with h as output with 64 features.

The median over the time axis of h is fed into a two layers neural
network to produce the static content vectorw. Since themedian
is permutation invariant, w contains no dynamic information,
only static information. w also has 64 features.

The contextmodel consists of two subsequent 1−D convolutions
in the temporal dimension. Thus, information is shared over
different frames, which is necessary for inference. The output
of this model is g.

4. https://github.com/anh-tong/fractional_neural_sde/blob/7565a2/
fractional_neural_sde/example.ipynb
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To start the SDE integration, we need an initial state that is con-
ditioned on the data. We define a three layer neural network
model that receives (g1, h1, h2, h3) and outputs the parameters of
the posterior distribution qx1 of the initial state of the SDE. x1 is
sampled from qx1 , which we model as a diagonal Normal distri-
bution. The parameters of a prior model px1 are also optimized,
and the Kullback-Leibler divergenceDKL(px1 , qx1) is added to the
loss function. This approach for training neural SDEs is similar
to others in literature (Li et al. (2020)).

The prior drift bθ(X, t) and the control functionu(Z(t), t)have the
same architecture, a neural network with two hidden layers of
each 200 neurons, with tanh activation functions. The shared dif-
fusion σθ(X, t) is implemented so that the noise is commutative
to allowMilstein solvers (Li et al. (2020) and Kidger et al. (2021b)),
i.e., σθ(X, t) is diagonal and the i-th component on the diagonal
only receives Xi(t) as input, where we have defined D separate
neural networks for each component. Each neural network has
two layers with 200 neurons and tanh activations.

bθ and σθ receive X(t) as input. The control function a con-
catenated vector of (X(t), Y1(t), . . . , YK(t), g(t)). g(t) is a linear
interpolation of g at time t. This enables the control function
to use appropriate information to be able to steer the process
correctly.

The resulting states x after integration of the SDE are fed, to-
gether with the static content vectorw in the decodermodel. The
decoder model has first a dense layer. The outputs of this first
layer are shaped in a 4×4 spatial grad. Subsequently, four blocks
with a convolution layer, groupnorm, a spatial nearest neighbour
upsampling layer and a SiLU activation. Thus, themodel reaches
the correct resolution of 64× 64. Two additional convolution lay-
ers with SiLU activation and a final sigmoid activation complete
the decoder model.

We train on sequences of 25 frames, with a time length of 2.4
(0.1 per frame). The frames have resolution 64 × 64 and 1 color
channel. Each model was trained for 187500 training steps with
a batch size of 32. We use the Adam (Kingma and Ba (2015)) opti-
mizer with fixed learning rate 3× 10−4. We use the Stratonovich–
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Milstein SDE solver (Kidger (2021)) with an integration step of
0.033 (3 integration steps per data frame). Modelswere trained on
a single NVIDIA GeForce RTX 4090, which takes around 39 hours
for one model.

Double pendulum. We use the train-test split from the original
dataset (Asseman et al. (2018)). The videos are recorded with a
high speed camera, we used every 10th frame to increase the
challenge of the dataset. We resized the frames to a resolution
of 128 × 128 resolution. Therefore, we added one block to the
encoder and decodermodel to achieve this resolution, compared
to the model for Stochastic Moving MNIST (SM-MNIST). We did
not use the static content vector w, since there is minimal static
information in this dataset, and used D = 8 latent dimensions.
Themodelswere trained for 124916 training steps, andwe trained
around 32 hours for one model. Beyond these outlined differ-
ences, all other details are equal to the SM-MNIST model.

3.7.6 Video Models

We conducted experiments on two video datasets: Stochastic
Moving MNIST (SM-MNIST) (Denton and Fergus (2018)) and the
real video dataset of a chaotic double pendulum (Asseman et
al. (2018)).

SM-MNIST and the double pendulum dataset contain different
forms of nuisances and present different challenges to our
stochastic model. First, SM-MNIST digits move with a constant
velocity along a trajectory until they hit at wall at which point
they bounce off with a random speed and direction. This sudden
event intersperses the deterministic motion with moments of
uncertainty, i.e., each time a digit hits a wall. This is the reason
why a stochastic model fits better than an ODE and unlike BM,
our noise canmodel the smooth and correlated trajectory simply
by raising the Hurst index.

On the other hand, the double pendulum dataset is actually gov-
erned by a set of coupled ordinary differential equations. How-
ever, despite being a simple physical system, it exhibits a rich
dynamic behavior with a strong sensitivity to initial conditions
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and noises in the environment (motion of the air in the room,
sound vibrations, vibration of the table due to coupling with the
pendulum etc.). Combinedwith the chaotic nature of the system,
this creates a major challenge for any model based upon smooth
ODEs. Ourmodel on the other hand heavy lifts this difficulty onto
the (fractional) stochastic noise, leading to a more appropriate
model. As shown in Tab. 3.2, our model outperforms the BM
baseline also in this dataset.

Figs. 3.18 and 3.19 show the posterior reconstructions of models
trained on the SM-MNIST and the double pendulum dataset re-
spectively. Fig. 3.20 shows stochastic video prediction samples of
SM-MNIST.
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4
Efficient Training of Neural SDEs
Using Stochastic Optimal Control

As is clear from the previous chapter, learning SDEs from data
is computationally challenging. Due to the iterative nature of
maximizing the evidence lower bound (ELBO), which requires
solving the SDE for each iteration, the training of neural SDEs is
generally slow and unstable. This chapter is a step towards the
final goals of this thesis (see Sec. 1.8), how do wemore efficiently
learn SDEs from data?

We present a hierarchical, control theory inspired method for
variational inference (VI) for neural stochastic differential equa-
tions (SDEs). In this chapter, we propose to decompose the con-
trol term into linear and residual non-linear components and
derive an optimal control term for linear SDEs, using stochastic
optimal control. Modeling the non-linear component by a neural
network, we show how to efficiently train neural SDEs without
sacrificing their expressive power. Since the linear part of the
control term is optimal and does not need to be learned, the
training is initialized at a lower cost andweobserve faster conver-
gence. Thework in this chapter is based onDaems et al. (2025).

4.1 Introduction

Continuous-time models of dynamical systems provide a pow-
erful framework for capturing the intricate variations in real-
world phenomena. Among these, stochastic differential equa-
tions (SDEs) extend the capabilities of deterministic models by
abstracting away unaccounted factors into instantaneous noise.
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SDEs naturally model various processes, including the motion of
small particles (e.g., molecules) and financial market dynamics.
When combinedwith neural networks (Tzen and Raginsky (2019)
and Li et al. (2020)), they become expressive tools for learning
from irregular time-series observations.

Despite their promise, path-wise inference for neural SDEs re-
mains a notorious challenge due to the complexity in fitting the
non-Gaussian posterior distributions. Variational inference (VI)
has become a prevalent tool with significant success in scaling
inference methods (Daems, Opper, et al. (2024)). Yet, computa-
tional challenges persist.

Existing works attempt to address these issues in VI for neural
SDEs in various ways. S. W. Park et al. (2021) introduced finite-
dimensionalmatching for efficient path comparison to train neu-
ral SDEs. Kidger et al. (2021b) adopted a generative-adversarial
approach to train thesemodels. Course andNair (2024) proposed
an amortized method for fast VI in latent neural SDEs, scaling
efficiently with data size using a linear posterior. However, re-
sorting to linear posteriors is a severe limitation in practice.

Inspired by optimal control theory, we propose a novel approach to
efficiently performVI in neural SDEs. Our key idea is to represent
the prior as the combination of a linearmodel and a residual non-
linear model. We leverage this decomposition to split the control
function—used to compute the variational posterior—into two
components. The first linear component is tractable and admits
a closed-form solution, making it computationally efficient but
less expressive. The residual non-linear component, modeled
by a neural network, captures higher-order effects at the cost of
iterative optimization. We combine the strengths of these two
approaches. First, we compute the linear part in closed form,
which serves as an efficient initialization for the neural network
modeling the non-linear residual. This hierarchical design al-
lows us to achieve faster and more stable inference compared to
existing approaches that directly model the full control term (Li
et al. (2020) and Daems, Opper, et al. (2024)).

In summary, our contributions are:
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4.2 Variational Inference of Stochastic Differential Equations

1. We derive the optimal control function solution for VI of a
linear SDE driven by Brownianmotion (BM), or byMarkov–
approximated fractional BM.

2. We propose a neural SDEmodel with a linear and a residual
non-linear (neural network) part, both for theprior SDEand
the control terms, for which the linear part is optimal and
does not need to be optimized or learned.

3. We show that our proposed model trains faster and more
stable than a standardnon-linear networkmodel on afinan-
cial data.

4.2 Variational Inference of Stochastic Differential
Equations

Definition 8 (SDE driven by BM (BMSDE)). A common generative
model for stochastic dynamical systems considers a set of observational
data D = {O1, . . . , OM}, where the Oi are generated (condition-
ally) independent at random at discrete times ti with a likelihood
pθ (Oi | X(ti)). The prior information about the unobserved path
{X(t); t ∈ [0, T ]} of the latent process X(t) ∈ RD is given by the
assumption thatX(t) fulfils the SDE:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dW (t) . (PRIOR-SDE)

The drift function bθ (X(t), t) ∈ RD models the deterministic part of
the change dX(t) of the state variable X(t) during the infinitesimal
time interval dt, whereas the diffusion matrix σθ (X(t), t) ∈ RD×B

encodes the strength of the added Gaussian white noise process, where
dW (t) ∼ N (0, dt) ∈ RB is the infinitesimal increment of a vector of
independent Wiener processes during dt.

Definition 9 (Posterior SDE). The paths of the PRIOR-SDE can be
steered by adding a control term u(X(t), t) that depends on all vari-
ables to be optimised and the observations, to the drift resulting in the
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variational posterior Opper 2019; Li et al. 2020:

dX̃(t) = bθ

(
X̃(t), t

)
dt+ σθ

(
X̃(t), t

)
u
(
X̃(t), t

)
dt

+ σθ

(
X̃(t), t

)
dW (t) . (4.1)

Inwhat follows, wewill assume a parametric form for the control
function u(X̃(t), t) ≡ uφ(X̃(t), t) and will recall a scheme for
inferring the variational parameters (θ, φ), i.e., variational infer-
ence.

Proposition 7 (Variational Inference for BMSDE (Opper (2019)
and Li et al. (2020))). The variational parameters φ are optimised
by minimising the KL–divergence between the posterior and the prior,
where the corresponding evidence lower bound (ELBO) is maximized
to find the most likely parameters θ:

M∑
i=1

log p (Oi | θ) ≥

EX̃

[
M∑
i=1

log pθ

(
Oi | X̃(ti)

)
−
∫ T

0

1

2

∥∥∥uφ (X̃(t), t
)∥∥∥2 dt] ,

(4.2)

where the observations {Oi} are included by likelihoods
pθ

(
Oi | X̃(ti)

)
and the expectation is taken over random paths

of the approximate posterior process defined by (Eq. (4.1)).

4.3 Optimal Control for Variational Inference for
SDEs

Our approach uses optimal control to decouple the possible lin-
ear and non-linear effects in the drift. While the linear part is
easier to solve in closed-form, the non-linear terms will account
for the complex variations in real data. In the sequel, we describe
these two parts, respectively, finally leveraging the strengths of
both.
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4.3 Optimal Control for Variational Inference for SDEs

4.3.1 Optimal posterior control term for a linear prior SDE

The control term u(x, t) := uφ(x, t) can be obtained explicitly
from the solution of the transformed Hamilton–Jacobi–Bellman
equation (HJBE) (Kappen (2005), Archambeau and Opper (2011),
and Maoutsa and Opper (2022)):

u(x, t) =

σθ(x, t)
>∇x logEprior

[ ∏
i:ti>t

pθ (Oi | X(ti)) |X(t) = x

]
. (4.3)

In general, such expectations over the paths of the PRIOR-SDE
involve solving second order partial differential equations in the
D + 1 variables and are intractable in closed form. However,
in what follows, we will show how to compute it exactly when
both the prior process X(t) and the observation likelihood are
Gaussian. This requires the drift bθ (x, t) to be a linear function in
x, and the diffusion σθ(t) independent of x.

Proposition 8. For a process X(t) with linear drift and state-
independant diffusion σ(t) where we have M observations
O = [O(T1), . . . , O(TM )] after time t, the optimal control term
takes the form:

u(x, t) = σ(t)>∇x logN (O;mx,C +Σ0) (4.4)

= σ(t)> (∇xmx)
> (C +Σ0)

−1 (O −mx) , (4.5)

where p(X(T )|x) = N (mx,C) is the joint Gaussian distribution
of the solutions of the prior SDE X(T ) = [X(T1), . . . , X(TM )] con-
ditioned on X(t) = x having mean vector by mx and covariance
matrix by C. The observation likelihood is assumed to be of the form
N (O; 0,Σ0).

Sketch of the proof. Under these assumptions, the expectation in
Eq. (4.3) for X(t) becomes anM dimensional Gaussian integral
of the form:

Eprior [. . .] =

∫
p(X(T )|x)p(O|X(T )) dX(T ) (4.6)

= N (O;mx,C +Σ0) . (4.7)
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Figure 4.1 We show the loss (negative ELBO) curves of the mod-
els driven byBM (left) andMA-fBM (right). For both experiments,
our proposed hybrid model (green) starts training with a loss
that ismultiple orders ofmagnitude smaller and convergesmuch
faster than a standard non-linear neural network model (blue).
Our hybrid model (green) also performs better than the strictly
linear model (orange), especially for the MA-fBM experiment.

Specifically, for a one–dimensional processX(t) ∈ R parameter-
ized by λ ∈ R+, η ∈ R and constant diffusion ς ∈ R+:

dX(t) = (−λX(t) + η) dt+ ς dB(t) , (4.8)

we canwrite the solution at some later time T conditioned on the
state x at current time t as (Särkkä and Solin (2019)):

X(T ) = xe−λ(T−t)+

∫ T

t
e−λ(T−s)η ds+

∫ T

t
e−λ(T−s)ς dB(s) (4.9)

which leads to the mean and covariance:

mx(i) = E [X(Ti|X(t) = x] (4.10)

= xe−λ(Ti−t) +
η

λ

(
1− e−λ(Ti−t)

)
, (4.11)

C(i,j) = Cov (X(Ti), X(Tj)) (4.12)

= ς2
∫ min(Ti,Tj)

t
e−λ(Ti−s)e−λ(Tj−s) ds (4.13)

= ς2
e−λ|Ti−Tj | − e−λ(Ti+Tj−2t)

2λ
. (4.14)
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4.3.2 Incorporating non-linear residual terms

We propose to define a prior SDE composed of linear and non-
linear drifts as

dX(t) = (−λθX(t) + ηθ + bθ (X(t))) dt

+ (ςθ + σθ(X(t))) dW (t) , (4.15)

where bθ(·) and σθ(·) are non-linear functions (e.g. neural net-
works) and θ indicates learnable parameters. Equivalently, the
control term is defined as

u(X̃(t), t) ≡ uc(X̃(t), t) + uφ(X̃(t), t) (4.16)

where uc(·) is the analytical optimal control solution (Eq. (4.5))
that depends on λθ, ηθ and ςθ (Eqs. (4.10) and (4.14)) and uφ is
a residual non-linear control term, modeled e.g. by a neural
network. For a purely linear model, without the non-linear com-
ponents, the ELBO would be optimal by definition. However,
such a model would not be expressive, i.e., not be able to capture
realistic, non-linear data. The core idea of ourwork is to combine
the linear termswith the residual non-linear terms bθ(·), σθ(·) and
uφ(·) such that the training of the model is more robust and fast,
benefiting from the best of both worlds.

Furthermore, a crucial advantage of the linear model is the use
of the tractable log-likelihood function logN (O;mx,C +Σ0) to
directly find λθ, ηθ and ςθ, without having to solve computation-
ally costly SDEs. This allows initialization of training where the
linear component is already optimal.

4.3.3 Extension to fractional Brownianmotion

We can extend this method to variational inference for
SDEs driven by fBM, as presented in Chapter 3. Remember
that Markov approximated fBM (MA-fBM) is defined as an
augmentation of the state withK Ornstein-Uhlenbeck processes
Yk(t) (see Prop. 3). Since this augmented process is driven by
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one single Wiener process, the control term can be written as
(compare to Eq. (4.5)):

u(x, y, t) =
(
σ(t)ω̄∇xmx,y + [1, . . . , 1]>∇ymx,y

)>
· (C +Σ0)

−1 (O −mx,y) . (4.17)

Note that this result is limited to the one-dimensional case, i.e.,
X(t) ∈ R.

Note that, because everything is driven by the sameWiener pro-
cess, we only need the priormeansmx,y and covariancesC at the
measurement times T for X(t), not for the Yk(t) processes. We
find them by writing the solution at a later time T conditioned
on the state (x, y1, . . . , yK) at current time t. Note that the so-
lutions are valid for both Type I and Type II of MA-fBM. Since
they are conditioned on the current state (x, y1, . . . , yK) at time t,
the initial conditions at t = 0, which are the defining difference
between Type I and Type II, are irrelevant. For ease of notation
we define the augmented state z = (x, y1, . . . , yK), denoting as
usual z = z(t), x = x(t) and yk = yk(t). Again, for a linear prior
SDE given by

dX(t) = (−λX(t) + η) dt+ ς dB̂H(t) , (4.18)

we write the solution at some later time T conditioned on the
current state:

X(T ) =

xe−λ(T−t) +

∫ T

t
e−λ(T−s)η ds︸ ︷︷ ︸

I

+ ς

∫ T

t
e−λ(T−s) dB̂H(s)︸ ︷︷ ︸

II

, (4.19)

I =
η

λ

(
1− e−λ(T−t)

)
, (4.20)

II = ς
∑
k

ωk

∫ T

t
e−λ(T−s) (−γkYk(s) ds+ dW (s)) (4.21)

= ς
∑
k

ωk

∫ T

t
e−λ(T−s)

(
−γk(yke−γk(s−t)
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+

∫ s

t
e−γk(s−r) dW (r)) ds+ dW (s)

)
(4.22)

= ς
∑
k

ωk

(
− γkyk

∫ T

t
e−λ(T−s)−γk(s−t) ds

+

∫ T

t
−γke−λ(T−s)

∫ s

t
e−γk(s−r) dW (r) ds

+

∫ T

t
e−λ(T−s) dW (s)

)
(4.23)

= ς
∑
k

ωk

(
γkyk

e−λ(T−t) − e−γk(T−t)

λ− γk

+

∫ T

t

∫ T

r
−γke−λ(T−s)−γk(s−r) ds dW (r)

+

∫ T

t
e−λ(T−s) dW (s)

)
(4.24)

= ς
∑
k

ωk

(
γkyk

e−λ(T−t) − e−γk(T−t)

λ− γk

+

∫ T

t

∫ T

s
−γke−λ(T−r)−γk(r−s) dr + e−λ(T−s) dW (s)

)
(4.25)

= ς
∑
k

ωk

(
γkyk

e−λ(T−t) − e−γk(T−t)

λ− γk

+

∫ T

t
γk
e−λ(T−s) − e−γk(T−s)

λ− γk
+ e−λ(T−s) dW (s)

)
. (4.26)

Putting everything together leads to:

X(T ) = xe−λ(T−t) +
η

λ

(
1− e−λ(T−t)

)
+ ς

∑
k

ωk

(
ykγk

e−λ(T−t) − e−γk(T−t)

λ− γk

+

∫ T

t

λe−λ(T−s) − γke
−γk(T−s)

λ− γk
dW (s)

)
. (4.27)

Thus the distribution of future solutions X(T ) is Gaussian with
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mean and covariance:

mx,y(i) = xe−λ(Ti−t) +
η

λ

(
1− e−λ(Ti−t)

)
+ ς

∑
k

ωkykγk
e−λ(Ti−t) − e−γk(Ti−t)

λ− γk
, (4.28)

C(i,j) =

ς2
∑
k,l

ωkωl
ζ(γk, γl)− ζ(γk, λ)− ζ(λ, γl) + ζ(λ, λ)

(λ− γk)(λ− γl)
, (4.29)

where

ζ(α, β) =
αβ

α+ β
(e−α(Ti−min(Ti,Tj))−β(Tj−min(Ti,Tj))

− e−α(Ti−t)−β(Tj−t)) . (4.30)

In the derivations above, we have silently assumed λ 6= γk for
any γk. If λ = γk, one should take the limit of λ → γk. In our
implementation, we linearize the u(x, y, t) function around the
γk values.

4.4 Experiments

We apply our method on the first 500 days of the 3–Month US
Treasury Bills1. We compare the training of our proposed hy-
brid model with the non-linear residual part to the training of
a standard non-linear model and a strictly linear model. We
also apply our method to the SDEs driven by MA-fBM, presented
in Sec. 4.3.2. The non-linear prior drift bθ(·), diffusion σθ(·) and
control term uφ(·) are neural networks. The observations are
encoded by an additional neural network into uφ(·), as is typi-
cally done in VI for SDEs (Li et al. (2020) and Daems, Opper, et
al. (2024)). All neural networks have three layers, 128 hidden
neurons and the tanh activation function. The observations noise
Σ0 = 0.12I. For the MA-fBM experiment we set a Hurst index
of 0.65 which is a reasonable choice for this data (Lysy and Pillai
(2013)). Fig. 4.1 shows the loss (negative ELBO) curves of the three
models, both for the models driven by BM and MA-fBM.

1. https://fred.stlouisfed.org/series/DTB3
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4.5 Conclusion

4.5 Conclusion

We present an optimal control inspiredmethod for efficient vari-
ational inference for (neural) SDEs. Under practically reasonable
assumptions, we explicitly formulate the control termwith linear
and residual non-linear components and derive a closed-form
control term for the linear part using stochastic optimal control.
This model is shown to converge faster than a standard non-
linear SDE, both for SDEs driven by BM andMarkov-approximate
fBM.

Futurework and limitations. Our work applies only to 1-d SDEs,
future work will involve a multi-dimensional formulation. We
also plan to cover latent SDEs (Course and Nair (2024)).
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5
Conclusion and Future Work

This dissertation made several contributions to the field of de-
terministic and stochastic dynamicalmodels learned from video.
We conclude our work by discussing and summarizing the main
contributions and listing future research directions.

5.1 Conclusion

We introduced a novel approach in Chapter 2 using keypoints to
learn Lagrangian dynamics directly from image data. By employ-
ing learned keypoint representations as positional state vectors,
we established a framework for learning constrained Lagrangian
dynamics from visual inputs. Our work advances beyond previ-
ous approaches thatwere limited to simplistic visual scenarios, as
we deliberately utilized more complex renderings from dm_con-
trol that incorporate lighting effects, shadows, reflections, and
backgrounds. Our proposed KeyCLD model demonstrated ca-
pability in making long-term predictions and learning accurate
energy models suitable for simple energy shaping control. Com-
parative analysis with unconstrained Lagrangian dynamicsmod-
els (KeyLD) and general second-order neural ODEs (KeyODE2)
confirmed that when constraint functions are known, the con-
strained Lagrangian formulation offers significant benefits for
long-term prediction accuracy. This research helps bridge the
divide between traditional control engineering approaches and
computer sciencemethodologies. Rather than choosing between
known equations of motion or completely general methods with
no prior knowledge, we explored the valuable middle ground by
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incorporating strong physics priors such as Lagrangian mechan-
ics whilemodeling components like inputmatrices and potential
energy with flexible neural networks.

We developed a new approach in Chapter 3 for variational
inference (VI) on stochastic differential equations (SDEs) driven
by fractional Brownianmotion (fBM). By leveraging the relatively
unexplored Markov representation of fBM, we approximated
non-Markovian paths using linear combinations of Wiener
processes. This approximation enabled the derivation of
evidence lower bounds through Girsanov’s change of measure,
yielding posterior path measures and likelihood estimates with
optimal coefficients in closed form. Our experimental validation
across fractional Ornstein-Uhlenbeck bridges and Hurst index
estimation confirmed the effectiveness of this approach.
Furthermore, our continuous-time architecture utilizing
Markov-approximate fBM-driven neural-SDEs demonstrated
improvements in video prediction, particularly when inferring
the Hurst parameter during inference.

Webuild upon the approachespresented inOpper (2019) andLi et
al. (2020) for variational inference (VI) for stochastic differential
equations (SDEs). It entails solving SDEs during training, and us-
ing gradient descent optimization through the solver. While a rel-
atively general and elegant approach, it can be computationally
expensive and thus practically limited. In recent years, a number
of works have proposed alternative approaches for inferring or
learning SDEs (Kong et al. (2020), Solin et al. (2021), Kidger et
al. (2021a), Kidger (2021), Zhang et al. (2023), Course and Nair
(2024), and Bartosh et al. (2025)). We present an optimal control
inspired method in Chapter 4 for efficient variational inference
for (neural) SDEs. Under practically reasonable assumptions,
we explicitly formulate the control term with linear and residual
non-linear components andderive a closed-formcontrol term for
the linear part using stochastic optimal control. This model is
shown to converge faster than a standard non-linear SDE, both
for SDEs driven by BM and Markov-approximate fBM.

The preceding three paragraphs address the three research goals
outlined in Sec. 1.8, thereby encapsulating the primary contribu-
tions of this dissertation: learning from video in continuous-time
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using physics priors and fractional noise. The integration of visual
data for dynamical system modeling furthermore holds signifi-
cant promise as imaging technology continues to advance. Cam-
era sensors are becoming increasingly affordable and powerful,
offering rich information sources that can replace and enhance
multiple sensor modalities at lower cost. Our research demon-
strates that it is possible to simultaneously learn both Lagrangian
dynamics and state estimator models from images in one end-
to-end process. Secondly, our advances in variational inference
for fractional processes open new avenues formodeling complex
temporal phenomena with long-range dependencies. Lastly, we
proposed amethod inspired from optimal control theory tomore
efficiently learn SDEs from data.

5.2 Future Work

Thehumbleprogress presented in this dissertation is only a small
step forward compared to the vast number of possible research
directions. In fact, the more progress is made, the more ques-
tions arise. This future work section is a good opportunity to
write down some of the most promising ideas. Some of these
are relatively well thought out, while not emperically validated
yet. We hope it might inspire future researchers to explore these
directions1.

5.2.1 KeyCLD

The work presented in Chapter 2 uses a given constraint man-
ifold to learn constrained Lagrangian dynamics. Learning the
constraint manifold (or constraint function) from data is a nat-
ural next step. Using a setup with multiple cameras, one could
also learn to estimate keypoints in 3-d. Lastly, learning non-
conservative forces such as friction and working towards real-
world applications are important future work directions.

1. Feel free to contact me for further discussions or possible collaborations!
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5.2.2 Variational inference for SDEs

The work presented in Chapter 3 is limited to variational infer-
ence for stochastic differential equations (SDEs) driven by frac-
tional Brownian motion (fBM). Future work can explore SDEs
driven by other types of noise, such as Lévy processes of frac-
tional Lévy processes, which are better suited tomodel long-tailed
noise.

5.2.3 Improving the Markov approximation of fractional
Brownianmotion with a constant drift

Specifically for fractional Brownian motion (fBM) Type I, the
approximation quality is low for a Hurst index H close to 1
(see Fig. 3.14). Nevertheless, one would expect approximating
fBM to be trivial close to H = 1, since in the limit of H → 1,
B

(I)
H (t) converges to a straight line:

lim
H→1

B
(I)
H (t) = ε

t

T
, ε

d
= B

(I)
H (T ) , (5.1)

where d
= denotes equality in distribution. In other words, by

sampling one point ε at some time T > 0, we can approximate
B

(I)
H (t) close to H = 1 as a straight line. Additionally, realized

paths ofMA-fBMwithH close to 1 show a drifting behaviour from
the true fBM (see Fig. 3.12). These approximations would benefit
from the simple addition of a constant drift term, that negates
this error. Thus, we propose to explicitly add a straight line to the
the approximation:

B̂
(I)
H (t) =

∑
k

ωk (Yk(t)− Yk(0)) + ωεε
t

T
, (5.2)

where we have to find the optimal ωε together with the usual ωk ’s.
Since this approximation is also a weighted sum of terms, we
can use the same method as before to find the optimal weights
(see Sec. 3.3.1). Let us defineω(ε) = [ω1, . . . , ωK , ωε] and work out
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A(ε), b(ε) as before (note that c(ε) ≡ c(I)).

A
(ε)
1:K,1:K = A(I) , (5.3)

A(ε)
ε,ε =

∫ T

0

t2

T 2
E
[
ε2
]
dt (5.4)

=

∫ T

0

t2

T 2
E
[
B

(I)
H (T )

2
]
dt (5.5)

= VH
T 2H+1

3
, (5.6)

A
(ε)
1:K,ε =

∫ T

0

t

T
E
[
B

(I)
H (T ) (Yk(t)− Yk(0))

]
dt (5.7)

=
1

Γ(H + 1/2)

∫ T

0

t

T

(
(e−γkt − 1)

·
∫ 0

−∞

(
(T − s)H−1/2 − (−s)H−1/2

)
eγks ds

+

∫ t

0
(T − s)H−1/2e−γk(t−s) ds

)
dt (5.8)

=

∫ T

0

t

γ
H+1/2
k T

(
1− e−γkt − eγkTQ(H + 1/2, γkT )

+ eγk(T−t)Q(H + 1/2, γk(T − t))

)
dt (5.9)

=
1

2γ
H+5/2
k T

(
− 4 + γkT (γkT − 2)

+ (γkT )
H+1/2 2γkT + 2H + 3

Γ(H + 5/2)
+ 2e−γkT (γkT + 1)

− (γ2kT
2 − 2)eγkTQ(H + 1/2, γkT )

)
, (5.10)

b
(ε)
1:K = b(I) , (5.11)

b(ε)ε =

∫ T

0

t

T
E
[
B

(I)
H (t)B

(I)
H (T )

]
dt (5.12)

=
1

2
VH

∫ T

0

t

T
(t2H + T 2H − (T − t)2H) dt (5.13)

= VH
2H2 + 5H + 1

4(2H + 1)(H + 1)
T 2H+1 . (5.14)
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Would that this where to be used as aMarkov-Approximation, we
need to be able to write it as a system of SDEs. Remember that we
first sample ε from a Gaussian distribution, and then start solving
the system of SDEs. This means we need to condition on ε, which
will be (approximated by) B̂(I)

H (T ), the value at the endpoint T .
For that we introduce a new process Yε(t):

Yε(0) =

1

Γ(H + 1/2)

∫ 0

−∞

(
(T − t)H−1/2 − (−t)H−1/2

)
dW (t) , (5.15)

dYε(t) = GH(t) dW (t) , GH(t) =
(T − t)H−1/2

Γ(H + 1/2)
, (5.16)

for which the solution at time T is obviously (see Eq. (3.7))

Yε(T )
d
= B

(I)
H (T )

d
= ε . (5.17)

We now consider the system of SDEs

dB̂
(I)
H (t) =

∑
k

ωk dYk(t) + ωε
ε

T
dt , (5.18)

dYk(t) = −γkYk(t) dt+ dW (t) , k = 1, . . . ,K , (5.19)
dYε(t) = GH(t) dW (t) . (5.20)

To condition the SDEs on ε, we introduce an extra control term
uε (Yε(t), t):

dB̂
(I)
H (t) =

∑
k

ωk dYk(t) + ωε
ε

T
dt (5.21)

dYk(t) = −γkYk(t) dt+ uε (Yε(t), t) dt+ dW (t),

k = 1, . . . ,K , (5.22)
dYε(t) = GH(t)uε (Yε(t), t) dt+GH(t) dW (t) . (5.23)

As usual (see Sec. 4.3.1)

uε (Yε(t), t) = ∂Yε log p (Yε(T ) = ε|Yε(t)) , (5.24)

where the probability density p is with respect to the uncondi-
tioned SDEs. Note, this is only a function of Yε, not the other Yk ’s.
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We have:

Yε(T ) = Yε(t) +

∫ T

t
GH(t) dW (t) , (5.25)

E [Yε(T )|Yε(t)] = Yε(t) , (5.26)
vt = Var(Yε(T )|Yε(t)) (5.27)

=

∫ T

t
GH(s)2 ds (5.28)

=
(T − t)2H

2HΓ(H + 1/2)2
. (5.29)

Hence

log p (Yε(T ) = ε|Yε(t)) = −(ε− Yε(t))
2

2vt
+ const. , (5.30)

and

uε (Yε(t), t) =
ε− Yε(t)

vt
. (5.31)

Yε(0) can be sampled together with the usual Y1(0), . . . , YK(0)
(see Dfn. 4) from their joint Gaussian distributions using:

Var(ε) = VHT
2H , (5.32)

Var(Yε(0)) = Var(ε)− v0 (5.33)
= VHT

2H − v0 , (5.34)

Cov(Yε(0), Yk(0)) =
1

Γ(H + 1/2)
E
[∫ 0

−∞
eγks dW (s)

·
(∫ 0

−∞
(T − s)H−1/2 dW (s)−

∫ 0

−∞
(−s)H−1/2 dW (s)

)]
(5.35)

=
1

Γ(H + 1/2)

∫ 0

−∞
eγks

(
(T − s)H−1/2

− (−s)H−1/2

)
ds (5.36)

=
eγkTQ(H + 1/2, γkT )− 1

γ
H+1/2
k

. (5.37)
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Finally, we can sample ε conditionally on Yε(0):

E [ε|Yε(0)] = Yε(0) (5.38)
Var(ε|Yε(0)) = v0 (5.39)

ε|Yε(0) ∼ N (Yε(0), v0) . (5.40)

This ultimately leads to an adapted augmented system SDEs
driven by ε-MA-fBM.

Definition 10 (ε-Markov-Approximate fBMSDE (ε-MA-fBMSDE)).
Substituting the fBM, BH(t), in Dfn. 6 by the finite linear combina-
tion of OU-processes B̂H(t) and an extra constant drift term, we define
ε-MA-fBMSDE as:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dB̂H(t), (5.41)

where (cf. see above)

dB̂H(t) =

K∑
k=1

ωk dYk(t) + ωε
ε

T
dt (5.42)

=

K∑
k=1

ωk(−γkYk(t) dt+ uε (Yε(t), t) dt+ dW (t))

+ ωε
ε

T
dt (5.43)

=

(
ω̄uε (Yε(t), t) + ωε

ε

T
−

K∑
k=1

ωkγkYk(t)

)
dt

+ ω̄ dW (t) , (5.44)
dYk(t) = (−γkYk(t) + uε (Yε(t), t)) dt+ dW (t) , (5.45)
dYε(t) = GH(t)uε (Yε(t), t) dt+GH(t) dW (t) . (5.46)

Proposition 9 (Augmented Markov SDE system for ε-MA-fBM in-
cluding ε method). X(t) can be augmented by the finite number
of Markov processes Yk(t) and the constant drift term Yε(t) (approx-
imating BH(t)) to a higher dimensional state variable of the form
Z(t)

.
= (X(t), Y1(t), . . . YK(t), Yε(t)) ∈ R(K+2)×D, such that the

joint process of the augmented system becomes Markovian and can be
described by an ’ordinary’ SDE:

dZ(t) = hθ (Z(t), t) dt+Σθ (Z(t), t) dW (t), (5.47)
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Figure 5.1 Comparison of the approximation error of MA-fBM
and ε-MA-fBM in function of H and with a time horizon T = 10,
γmin = 10−2 and γmax = 102.

where the augmented drift vector hθ ∈ R(K+2)×D and the augmented
diffusion matrix Σθ (Z, t) ∈ R(K+2)×D×D are given by

hθ (Z, t) =


bθ (X, t) + σθ (X, t)

(
ωε

ε
T −

∑
k ωkγkYk

)
−γ1Y1
. . .

−γKYK
0



+


ω̄σθ (X, t)

1
. . .
1

GH(t)

uε(Yε, t), (5.48)

Σθ (Z, t) =


ω̄σθ(X, t)

ID
...
ID

GH(t)ID

 , (5.49)

where ID ∈ RD×D is the identity matrix, and where ε ∈ RD and
uε(Yε, t) : RD × R → RD are generalized to vectors.

Fig. 5.1 illustrates the approximation error of MA-fBM compared
to the presented ε-MA-fBM. The ε-MA-fBM error is uniformly
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lower than the MA-fBM for any H, and significantly lower for
H > 0.5. As can be expected, the error goes down to 0 for the
limit H → 1, since the true fBM is a straight line there. But also
forH around 0.6, the error is already lower thanks to the addition
of the constant drift term. This shows the promise of the ε-MA-
fBM approach.

Variational Inference

Since this approximation is again a Markovian system of SDEs,
with one extra process Yε(t), we can use the same variational
inference approach as in Chapter 3. Note that, in principle, Yε(0)
and ε should be modeled with a posterior distribution.

Linear SDE driven by ε-MA-fBM

In the case of a linear 1-d SDE, e.g., for fractional diffusion mod-
els (Nobis et al. (2024)) or fractional Schrödinger bridges (Nobis
et al. (2025)), we have

dX(t) = −θt(X(t)− µt) dt+ σt dB̂H(t) , (5.50)

which can be written in augmented form as

dZ(t) = F (t)Z(t) dt+ εu(t) dt+ L(t) dW (t) , (5.51)

where

F (t) =


−θt −σtω1γ1 · · · −σtωKγK −σtω̄/vt
0 −γ1 −1/vt
... . . . ...
0 −γK −1/vt
0 0 · · · 0 −GH(t)/vt

 , (5.52)

u(t) =


θtµt + σt (ωε/T + ω̄/vt)

1/vt
...

1/vt
GH(t)/vt

 , (5.53)
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L(t) =


σtω̄
1
...
1

GH(t)

 . (5.54)

The mean and covariance can be solved using ODEs (Särkkä and
Solin (2019)):

dm

dt
= F (t)m+ εu(t) , (5.55)

dP

dt
= F (t)P + PF>(t) + L(t)L>(t) , (5.56)

with initial valuesm(0) and P (0). We will assume that E[X(0)] =
0 and we know that E[Y (0)] for all Y processes (see above), thus
m(0) = 0. We also assume Var(X(0)) = 0 and Cov(X(0), Y (0)) =
0 for all Y processes, thus all other entries in P (0) are given
above.

However, the mean is conditioned on ε, which is not very conve-
nient because theODEswould need to be solved every time again,
for every sampled ε. Still, one can express the solution using the
transition matrixΨ(τ, t):

m(t) = Ψ(t, 0)m0 +

∫ t

0
Ψ(t, τ)εu(τ) dτ (5.57)

= ε

∫ t

0
Ψ(t, τ)u(τ) dτ , (5.58)

becausem0 = 0. This means, for a general choice of θt, µt, σt

mp(t) =

∫ t

0
Ψ(t, τ)u(τ) dτ, (5.59)

which is the solution of the ODE

dmp

dt
= F (t)mp + u(t), mp(0) = 0, (5.60)

should be solved numerically. This leads to a general solution

m(t) = εmp(t) . (5.61)
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Likewise, P (t) should be solved numerically (it does not depend
on ε). Finally, we have

p(Z(t)|ε) = N (εmp(t), P (t)) , (5.62)

p(Z(t)) =

∫
p(Z(t)|ε)p(ε) dε (5.63)

= N
(
mp(t)E[ε], P (t) +mp(t)Var(ε)m

>
p (t)

)
(5.64)

= N
(
0, P (t) + VHT

2Hmp(t)m
>
p (t)

)
. (5.65)

As said above, this solution is forX(0) = 0. As usual, for a given
datapoint x0:

p(Z(t)|X(0) = x0) =

N
(
[x0, 0, . . . , 0]

>, P (t) + VHT
2Hmp(t)m

>
p (t)

)
. (5.66)

5.2.4 Efficient learning of stochastic differential equations

In Chapter 4 we propose a method for more efficient learning
of stochastic differential equations (SDEs) that is based on opti-
mal stochastic control. A possible improvement of this method
is the generalization to multidimensional SDEs. In this case,
λθ ∈ RD×D and ηθ ∈ RD, and the non-linear drift function
bθ(X(t), t) : RD × R → RD. Note that Prop. 8 is already valid for
the multidimensional case. The multidimensional prior process
is:

dX(t) = (−λX(t) + η) dt+ ς dB(t), (5.67)

withλ ∈ RD×D, η ∈ RD and ς ∈ RD×D. Deriving the full Gaussian
expression for p(X(t1), . . . , X(tM )|x) can be done by defining a
concatenization of the states at the different observation times
(t1, . . . , tM ). This could be a practical hurdle due to the increased
size of the covariancematrix. Analternative approach couldbe to
apply backwards filtering, i.e., solving the backward Kolmogorov
equations as described in Archambeau and Opper (2011).

Another improvement is to define a local linearization scheme
instead of the explicit residual formulation (Sec. 4.3.2). Using the
explicit residual formulation, there is no guarantee that the non-
linear term contains no linear terms, which are then not taken
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into account by the optimal linear control term. Instead, we can
define a general, non-linear prior drift function bθ(X(t), t), and
use a local linearization. Concretely, the prior drift function is
locally linearized at current time t∗ and state x using

bθ(X(t), t) ≈ −λX(t) + η , (5.68)

λ = −∂bθ
∂X

(X(t), t∗)
∣∣∣
X(t)=x

, (5.69)

η = bθ(x, t
∗) + λx . (5.70)

λ and η derived thisway canbe analoguously used to calculate the
prior distribution used in the formulation of the optimal control
term (Eq. (4.5)). In the context of learning SDEs with gradient
descent, bθ(X(t), t) should be differentiable with respect toX(t),
thus calculating λ and η is trivial using the specific tools provided
by the machine learning library used for the implementation.
The downside of this method is the possible increase in compu-
tation time, as the local linearization has to be calculated at each
time step of the SDE solver.

Finally, the method is not immediatly applicable to latent SDEs,
since a tractable observation likelihood needs to be available in
latent space. If the encoding from the observation space to latent
space is linear, the observation likelihood can be mapped to the
latent space. For non-linear encodings, the observation likeli-
hood has to be approximated in the latent space, e.g., by using
particle filters.
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